
Blocking Moving Window algorithm: Conditioning multiple‐point
simulations to hydrogeological data

Andres Alcolea1,2 and Philippe Renard1

Received 5 March 2009; revised 21 January 2010; accepted 25 February 2010; published 6 August 2010.

[1] Connectivity constraints and measurements of state variables contain valuable
information on aquifer architecture. Multiple‐point (MP) geostatistics allow one to
simulate aquifer architectures, presenting a predefined degree of global connectivity. In
this context, connectivity data are often disregarded. The conditioning to state variables is
usually carried out by minimizing a suitable objective function (i.e., solving an inverse
problem). However, the discontinuous nature of lithofacies distributions and of the
corresponding objective function discourages the use of traditional sensitivity‐based
inversion techniques. This work presents the Blocking Moving Window algorithm
(BMW), aimed at overcoming these limitations by conditioning MP simulations to
hydrogeological data such as connectivity and heads. The BMW evolves iteratively until
convergence: (1) MP simulation of lithofacies from geological/geophysical data and
connectivity constraints, where only a random portion of the domain is simulated at every
iteration (i.e., the blocking moving window, whose size is user‐defined); (2) population of
hydraulic properties at the intrafacies; (3) simulation of state variables; and (4) acceptance
or rejection of the MP simulation depending on the quality of the fit of measured state
variables. The outcome is a stack of MP simulations that (1) resemble a prior geological
model depicted by a training image, (2) honor lithological data and connectivity constraints,
(3) correlate with geophysical data, and (4) fit available measurements of state variables
well. We analyze the performance of the algorithm on a 2‐D synthetic example. Results
show that (1) the size of the blocking moving window controls the behavior of the BMW,
(2) conditioning to state variable data enhances dramatically the initial simulation
(which accounts for geological/geophysical data only), and (3) connectivity constraints
speed up the convergence but do not enhance the stack if the number of iterations is large.
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1. Introduction

[2] Reliable hydrogeological models demand accurate
characterizations of aquifer heterogeneity and a quantifica-
tion of the inherent uncertainties. To that end, available data
are integrated in stochastic inverse models. In broad terms,
inverse modeling refers to the process of gathering infor-
mation about the model and its parameters from measure-
ments of what is being modeled [Carrera et al., 2005].
These include direct measurements of aquifer properties and
indirect observations of dependent state variables such as
heads or concentrations. Inverse modeling has become an
important focus of research, as revealed by the numerous
state‐of‐the‐art publications [Carrera, 1987; Carrera et al.,
2005; de Marsily et al., 1999; Hendricks Franssen et al.,
2009; Kool et al., 1987; McLaughlin and Townley, 1996;
Yeh, 1986]. Inverse methods incorporate direct models that
interpolate measurements of the property under study (e.g.,

measurements of hydraulic conductivity arising from prior
interpretation of pumping tests) and can account also for
other correlated variables such as geophysics. Traditionally,
inverse methods make use of conditional estimation and
simulation tools. Examples are variants of (co‐)kriging and
sequential Gaussian simulation. These techniques rely on
two‐point geostatistical measures such as variograms or
covariances and assume that the joint distribution of aquifer
parameters is multi‐Gaussian. This is motivated by the fact
that, first, histograms of field data (or some suitable transform
of them) often display a Gaussian character and, second,
multi‐Gaussianmodels are parsimonious (i.e., simply defined
by an expected value and a covariance function). Unfortu-
nately, univariate Gaussian distributions of aquifer para-
meters do not guarantee a joint multi‐Gaussian distribution
[Gomez‐Hernandez and Wen, 1998]. To make things worse,
Gaussian models maximize entropy. Therefore, they fail to
reproduce connectivity features of aquifer properties because
the spatial continuity of their extreme values is minimum
[Journel and Deutsch, 1993; Zinn and Harvey, 2003]. Thus,
in general, methods based on two‐point statistics are not
capable of reproducing realistic geological structures pre-
senting discrete features (e.g., channels, fractures, etc.) and/or
characterized by curvilinear “crispy” geometries such as
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alluvial fans or braided channels [Falivene et al., 2006;
Kerrou et al., 2008; Knudby and Carrera, 2005].
[3] Discrete geological features cause abrupt changes in

aquifer properties. These large “jumps” over small distances
exert a major control on groundwater flow and, especially,
on contaminant transport [Alcolea et al., 2008; Knudby and
Carrera, 2005; Trinchero et al., 2008]. The influence of
the spatial variability of aquifer properties at a smaller scale
(i.e., within lithofacies) is also dominant, but to a lesser extent.
Those discrete features must be modeled explicitly even if
their exact geometry and position is not well‐known. In some
specific cases, the identification of such highly connected
patterns is possible using traditional multi‐Gaussian tech-
niques in an inverse problem framework if, first, their
geometry is not very sophisticated and, second, the infor-
mation contained in indirect observations (e.g., heads or
concentrations) is sufficiently adequate to identify connec-
tivity patterns [Alcolea et al., 2006a, 2006b; Meier et al.,
2001]. To overcome these limitations, some inversion meth-
ods incorporate stochastic direct models capable of handling
abrupt changes in aquifer properties explicitly. Such direct
models were reviewed by de Marsily et al. [2005]. Examples
are the Boolean method [Haldorsen and Lake, 1984], the
sequential indicator simulation method [Gomez‐Hernandez
and Srivastava, 1990], the truncated pluri‐Gaussian method
[Le Loc’h and Galli, 1997], the transition probabilities method
[Carle and Fogg, 1997] and multiple‐point (MP hereinafter)
geostatistics [Guardiano and Srivastava, 1993; Strebelle,
2002]. Falivene et al. [2006] applied most of the aforemen-
tioned techniques to a turbidite sandstone deposit. Inversion
methods not assuming a multi‐Gaussian model include the
conditional probabilities method [Capilla et al., 1999] and
the gradual deformation method, that has been applied to
truncated pluri‐Gaussian [Hu et al., 2001] and Boolean models
[Jenni et al., 2007]. The sequential self‐calibration method
[Gomez‐Hernandez et al., 1997] was extended to invert litho-
facies distributions from state variable data within the frame-
work of truncated Gaussian simulation [Wen et al., 2000].
[4] Among the aforementioned techniques, MP geosta-

tistics presents the ability of simulating a wide variety of
geological structures and an accurate conditioning to local
data because of its pixel‐based nature [Xu, 1996]. This
technique became important after the work by Strebelle
[2002], who developed the first efficient MP algorithm,
based on the single normal equation (snesim). Recently, Hu
and Chugunova [2008] published the first detailed state‐of‐
the‐art on MP geostatistics. Lithofacies maps are simulated
using multipoint probability distributions conditioned to the
heterogeneity patterns displayed in the surrounding data.
These probability distributions are borrowed from a training
image which depicts a (prior) conceptual geological model
defining the expected patterns of geological heterogeneity.
As such, training images need not to honor any data. Several
training images can be used at a time, depicting different
patterns of heterogeneity, possibly at different observation
scales. Training images are often borrowed from aerial
photos, outcrop observation or from the (sometimes sub-
jective) decision of a modeler. Caers and Zhang [2004]
address different ways for generating stationary training
images. Recent works by Chugunova and Hu [2008] and de
Vries et al. [2009] address the problem of nonstationarity.
MP geostatistical techniques have been successfully applied
to a number of case studies including petroleum engineering

and hydrogeology [Caers et al., 2003; Feyen and Caers,
2006; Liu et al., 2004; Strebelle, 2006]. Those works were
devoted to the direct simulation of geological structures
accounting only for direct observations of lithology at
available wells and correlated soft data arising, for example,
from geophysics. However, dependent state variables such
as heads and geometrical connectivity constraints contain
valuable information on aquifer architecture and must be
accounted for in meaningful hydrological models. Geo-
metrical connectivity data (i.e., point “i” connected with
point “j”) can be accommodated in MP simulations [Allard,
1994; Renard and Caers, 2008]. Usually, the connectivity
information is not geometric in a strict sense, but extracted
from state variable measurements, such as heads (flow
connectivity) or concentrations (transport connectivity from
tracer breakthrough curves). Knudby and Carrera [2005]
and Trinchero et al. [2008] present comparisons between
different measures of connectivity. Conditioning to state
variable data is often carried in the framework of inverse
problem.
[5] In the context of inverse problem, MP geostatistics

has been embedded in the Probability Perturbation Method,
PPM hereinafter [Caers, 2003; Caers and Hoffman, 2006;
Hu, 2008]. The PPM is an iterative technique. Each iteration
consists of perturbing the current simulation (or the initial)
so that the new solution fits state variable data better than
the previous one. The degree of perturbation is controlled by
a single parameter rD ranging from 0 (no perturbation) to 1
(a completely new MP simulation). rD is used to modify a
local probability map which is then combined with prior
probabilities of the initial MP simulation using the tau
model [Journel, 2002]. This parameter is optimized at each
iteration. Ronayne et al. [2008] presented the first hydro-
geological application of this method. That work is aimed at
identifying the position and geometry of a discrete channel
deposit in the alluvial fan system that underlies the Lawrence
Livermore National Laboratory (U.S.) from dynamic data
arising from pumping tests. Their results suggest that the
objective function being minimized is not, in general, a
continuous function of rD. Discontinuities may appear when,
at a given iteration, some high or low hydraulic conductivity
structures (e.g., sand channels or shale lenses) are suddenly
connected or disconnected. This feature is intrinsic to
inverse problems with a discrete distribution of lithofacies
and can hinder the identification of the optimum value of rD.
A second difficulty is inherent to the use of the tau model,
because the posterior distribution (conditioned to state
variables) depends on the value of the coefficient used in the
tau model [Caers, 2007]. Current techniques are not able to
estimate a priori the optimum value of that coefficient. An
alternative, also embedding MP geostatistics, consists of
considering the inverse problem as a search problem [Suzuki
and Caers, 2006; Suzuki et al., 2008], as opposed to the
traditional sensitivity‐based optimization. These authors
consider a large ensemble of MP simulations of the reservoir
conditioned to geological data only and use search methods
(e.g., Nearest Neighborhood) to select those that match state
variable data. To speed up the search, they consider a
modified similarity Hausdorff distance [Dubuisson and
Jain, 1994] between the initial simulations. This approach
is appealing because it considers several prior geological
models defining different structures of the reservoir (i.e.,
generated with different training images). As such, prior
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conceptual uncertainties are alleviated. Yet, this search method
requires the prior generation of all possible structures. As
such, new patterns of heterogeneity cannot be included as
the search process evolves.
[6] Markov chain Monte Carlo methods (McMC here-

inafter) are an alternative to overcome the difficulties of
the sensitivity‐based minimization of discontinuous objec-
tive functions [Balakrishnan et al., 2003; Fu and Gomez‐
Hernandez, 2008, 2009; Liu and Oliver, 2003; Oliver et al.,
1997; Robert and Gasella, 1999; Tarantola, 2005; Zanini
and Kitanidis, 2009]. These techniques sample the poste-
rior distribution of parameters (in a Bayesian sense) by, first,
drawing samples of the prior distribution and, second,
accepting or rejecting them on the basis of a Metropolis‐
Hastings type criterion. The latter accounts for the fit to
measurements not accounted for in the sampling of the prior
distribution. These “derivative‐free” approaches are also
appealing because they do not assume any particular dis-
tribution of parameters or any linearization. In addition, they
guarantee (by construction) that the samples of the posterior
pdf are also samples of the prior. However, these methods
are generally CPU time consuming owing to the large
number of samples of the prior that have to be tested. This
limits their applicability to problems with a small number of
unknown parameters [Balakrishnan et al., 2003; Hassan et
al., 2009; Liu and Oliver, 2003]. Fortunately, efficient algo-
rithms that allow the inference of highly parameterized fields
have been proposed recently [Fu and Gomez‐Hernandez,
2009; Holloman et al., 2006; Zanini and Kitanidis, 2009]
or are developed nowadays.
[7] In an attempt to overcome some of the aforementioned

difficulties, we present the Blocking Moving Window algo-
rithm (BMW hereinafter), which combines MP geostatistics
and forward simulation (as opposed to traditional sensitivity‐
based inversion) of state variables. The derivative‐free
character of the BMW alleviates the problems caused by the
discontinuous nature of the objective function. The algorithm
is similar to the one devised by Fu and Gomez‐Hernandez
[2009] for multi‐Gaussian fields, the main novelties being
(1) the inclusion of a MP simulator as direct model instead of
the sequential Gaussian simulator in the work by Fu and
Gomez‐Hernandez [2009] and (2) the inclusion of a cool-
ing schedule in the acceptation/rejection process. The MP
simulator allows one to reproduce non‐Gaussian fields
presenting connectivity features and “crispy” geometries
regardless of the information contained in the state variables
data set. The cooling schedule makes our method to deviate
from the standard McMC approach (actually, the BMW
contains the basic “ingredients” of Simulated Annealing, SA
hereinafter [Kirkpatrick et al., 1983]). Yet, it makes the
iterative process less random and, therefore, more efficient.
The BMW is described in detail and applied to a synthetic
example mimicking the groundwater flow to a well in a
channelized geological scenario. We investigate the role of
the different conditioning data sets (lithology and head
at selected observation wells and connectivity constraints).
Results show that conditioning to heads enhances dramati-
cally the initial MP simulation (i.e., accounting for geolog-
ical/geophysical information only). The use of connectivity
constraints does not improve the reliability of the charac-
terization but enhances the convergence of the algorithm.
This paper is organized as follows. First, the workflow of
the BMW is presented in detail. Second, the synthetic

example is described. The paper ends with a discussion of
the results and some conclusions about the use of hydro-
geological data to condition MP geostatistical simulations.

2. Methodology

[8] The BMW algorithm consists of four main steps,
repeated iteratively until convergence. First, a MP condi-
tional simulation of the lithofacies distribution is drawn by
perturbing a previous state. This simulation is consistent
with a prior geological conceptualization depicted by a
suitable training image (i.e., high‐order statistics are bor-
rowed from it). As such, it belongs to the prior space of
plausible geological models. It is also anchored to hard data
of lithofacies at observation wells and correlates with soft
data. Connectivity constraints (i.e., point “i” connected with
point “j”) can also be used as conditioning data for the MP
simulation. Only a portion of the domain, selected randomly
(i.e., the blocking moving window), is simulated. This
makes the iterative process less random and therefore, more
efficient [Fu and Gomez‐Hernandez, 2009]. Prior condi-
tioning to connectivity data [Renard and Caers, 2008] also
enhances the convergence rate. Second, hydraulic properties
at the intrafacies are populated. Third, a forward simulation
of state variables is carried out and a suitable objective
function is calculated. This function measures the misfit
between calculated and measured state variables. If the
objective function is smaller than a user‐supplied threshold
value, the MP simulation becomes a stack member regard-
less of the stage of the iterative process (i.e., this can occur
at very early iterations). Finally, the simulation is accepted
or rejected according to a “survival” probability sampled
from a Gibbs’s distribution. The final outcome is a stack of
simulations that (1) belong to the prior space of plausible
lithofacies distributions (i.e., they resemble the training
image), (2) are anchored to lithofacies and connectivity
constraints, (3) correlate with soft data, and (4) fit measure-
ments of state variables well. Note that at a given iteration, the
MP simulation drew at step 1 is not at all perturbed. Thus, MP
simulations populating the stack belong to the prior space of
plausible geological models (i.e., unconditional, resembling
the prior geological model only) and to the posterior sub-
space, conditioned to available data. Details on these basic
steps at a generic iteration “k” are provided below.

2.1. Step 1: Multiple‐Point Conditional Simulation
of Lithofacies

[9] Step 1.1 is the random generation of a squared
blocking moving window. The location of the center is
randomly drawn (i.e., with uniform probability). In this
work, the window size is supplied by the user. At first
iteration, the window encompasses the whole simulation
domain. The window size is the parameter that exerts a
major control on the algorithm behavior. Early approaches
in the McMC literature modified a single element per iter-
ation [Oliver et al., 1997]. This procedure was proved
effective but inefficient owing to the large number of
iterations required.
[10] Step 1.2 is the generation of the conditioning data set.

We only simulate elements encompassed by the blocking
moving window. The remaining elements (simulated at the
last accepted iteration; see step 4) are considered as condi-
tioning data. Available lithofacies data within the window
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and all the connectivity constraints are also included in the
conditioning data set.
[11] Step 1.3 is the multiple‐point conditional simulation

of a test lithofacies distribution, Ltest
k . This resembles the

variability patterns depicted by the training image (or images).
As such, Ltest

k belongs to the prior space of plausible geological
models. It is already conditioned to the aforementioned hard
data sets and correlates with soft data arising, for example,
from geophysics. In this work, we have used Impala, our
own MP kernel (J. Straubhaar et al., Multi‐point reservoir
modeling, submitted to Mathematical Geosciences, 2010).
Yet, it is worth to mention that our implementation of the
BMW is general and other codes for stochastic simulation
(MP or not) can be accommodated at this step.
[12] Step 1.4 is the prior rejection of Ltest

k . The forward
simulation of state variables is often CPU‐intensive. Thus,
prior to solving the forward problem, a lithofacies distri-
bution can be rejected if it does not resemble other sources
of geological or geometrical information that cannot be
included as conditioning data at step 1.3. If Ltest

k is rejected at
this stage, algorithm recalls step 1.1 (i.e., a new lithofacies
distribution is drawn). Prior rejection is decided by the so‐
called “proxies,” that is, criteria based on a fast evaluation of
Ltest
k . Among others, available proxies implemented in the

BMW are (1) proportions of the training image (Ltest
k is

rejected at this stage if the proportions of the different
lithofacies do not fit the corresponding proportions at the
training image or user defined ranges) and (2) global and
directional connectivity features of the training image (Ltest

k is
rejected if it does not resemble the global and directional
connectivity depicted by the training image).

2.2. Step 2: Population of Hydraulic Properties

[13] Hydraulic properties are populated at the intrafacies
defined by Ltest

k . Options implemented in the BMW include
constant values and variants of conditional estimation (i.e.,
of kriging/cokriging) and sequential Gaussian (co‐) simu-
lation. In the latter cases, a geostatistical model (e.g., a
suitable variogram) defining the heterogeneity within each
lithofacies is required.

2.3. Step 3: Simulation of Dependent State Variables

[14] Dependent state variables are obtained by solving
numerically the equations of the forward problem. In this
work, we use TRANSIN [Medina and Carrera, 2003], a
finite element code for the simulation of groundwater flow
and contaminant transport. Still, simulators of other state
variables can be accommodated easily. This confers flexi-
bility to the implementation of the BMW.

2.4. Step 4: Posterior Rejection

[15] The goal is to obtain a stack of MP simulations that
fit measurements of state variables well. To that end, we
evaluate an objective function Ftest

k measuring the mismatch
between calculated and measured state variables:

Fk
test Lktest
� � ¼XNtype

i¼1

�i

Xni
j¼1

!j ci;j L
k
test

� �� oi;j
� �2

; ð1Þ

where Ntype is the number of types of observations (e.g., i = 1
for heads, i = 2 for concentrations, etc.); ni is the number of

observations of type i; ci, j and oi, j are the calculated and
measured values, respectively; and wj and mi are balance
weights associated with measurement “j” of type “i,”
respectively. The posterior acceptance (or rejection) of the
MP simulation drew at step 1, Ltest

k , is decided upon by a
Metropolis type criterion [Metropolis et al., 1953]. If Ftest

k is
smaller than the previous accepted one (termed Fprev, with
corresponding lithofacies distribution Lprev), Ltest

k is termed
superior and is accepted directly. Otherwise, the simulation
is termed inferior and can still be accepted according to a
survival probability sampled from the Gibbs distribution:

p ¼ min 1; exp �Fk
test � Fprev

Tk

� �� �
; ð2Þ

where p is the probability of accepting an inferior MP
simulation and Tk is the so‐called annealing temperature. If
Ltest
k is accepted, the system is updated (i.e., Lprev = Ltest

k and
Fprev = Ftest

k ). Ltest
k is added to the stack if Ftest

k is smaller
than a user‐defined threshold value. This measures the
required extent to which model outputs are in agreement
with their measured counterparts. Thus, it defines the greed
of the final stack (i.e., a greedy tolerance will lead to a
reduced stack). The annealing temperature T is controlled by
the cooling schedule. A key issue in the definition of the
cooling schedule is the cooling rate. A fast cooling may
freeze the algorithm in a local minimum of the objective
function. A slow cooling can make the computational effort
unaffordable. A number of cooling schemes can be applied
[Van Laarhoven and Aarts, 1987], the most widely spread
being the geometric progression:

Tkþ1 ¼ �Tk ; if mod ðk; ncycleÞ ¼ 0; ð3Þ

where a is a scalar in the range (0,1) and ncycle is the number
of iterations per temperature step. In this work, we adopted
a = 0.9, which behaves correctly in most cases [Alcolea et
al., 2000; Van Laarhoven and Aarts, 1987]. At first itera-
tion, the annealing temperature must be very high (and,
correspondingly, the probability of accepting inferior dis-
tributions). This allows a broad scanning of the prior space
of geologically coherent lithofacies distributions. As the
iterative process evolves, T diminishes and we only accept
inferior distributions whose objective function does not
depart too much from the previous accepted one. The
annealing temperature T is lowered after a number of itera-
tions ncycle. At the end of the iterative process (T small), the
probability defined in equation (2) is very small. As such, MP
simulations presenting large departures from the best one (in
theory, the global minimum) are not accepted.

2.5. Step 5: Convergence Check

[16] The aforementioned steps are repeated iteratively
until convergence is achieved. The three traditional con-
vergence criteria have been encoded in our implementa-
tion. These are (1) a small value of the objective function,
(2) target stack size, and (3) maximum number of iterations.
An important issue to guarantee the convergence of the
BMW is the number of iterations. This must be large
enough to ensure the stationarity of the stack. Under such
conditions, the addition of new members does not change the
statistical moments of the stack. Two additional convergence
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checks analyze the stationarity of the process, as measured by
the evolution of the average and the variance of the ensemble
mean (denoted by hLstacki and sstack

2 , respectively):

D Lstackh i ¼ Lstackh i jþ1� Lstackh i jj j
Lstackh i jþ1j j

D�2
stack ¼

�2 jþ1
stack ��2 jstackj j
�
2 jþ1
stackj j

: ð4Þ

Here, j denotes the number of stack members. The conver-
gence criteria in equation (4) are calculated whenever a new
member is added to the stack. The BMW stops when either
DhLstacki orDsstack

2 reach threshold values during a number of
stack updates (i.e., when hLstacki or sstack2 reach a plateau).
[17] Note that the use of a cooling schedule makes the

BMW to deviate slightly from McMC methods. These have
been proved to sample the posterior pdf properly. The BMW
resembles more a mixture of SA, aimed at obtaining the
maximum likelihood point of the pdf [Tarantola, 2005], and
a genetic algorithm. As such, the goal of the BMW is not to
sample accurately the posterior pdf but to obtain a stack of
MP simulations that (1) belong to the prior space of plau-
sible geological models and (2) honor or fit well available
data. The typical behavior of the BMW is as follows. At
early iterations, when the temperature is sufficiently high,
the BMW explores broadly the prior space of plausible
geological models (i.e., those resembling the prior geolog-
ical model) and adds to the stack MP simulations that cor-
respond to potential local minima of the posterior pdf. On
the contrary, the BMW is greedy at late stages. Then, the
stack is updated with MP simulations that do not deviate
much from the optimum one (theoretically, the global
minimum). As such, the stack is made of a cluster of
members that are similar to the optimum MP simulations
plus several “isolated” members that are different and that
were attained at early to intermediate stages of the iterative
process. In any case, it is worth to mention that the BMW is
a McMC exhaustive sampler of the posterior pdf if the
cooling schedule is removed (i.e., a = 1 in equation (3)).

3. Application

[18] The objective of this application is threefold. First,
we illustrate the performance of the BMW. Second, we
explore the role of the different conditioning data sets
(lithofacies and head data at selected observation wells and
connectivity constraints). Third, we analyze the sensitivity
of the algorithm to its dominant parameter, that is, the size of
the blocking moving window. Results are explored on the
basis of a synthetic example depicting groundwater flow
toward a well in a channelized (binary) geological scenario.
[19] Figure 1 summarizes the geological setup. A domain

of 100 × 100 m2 is discretized in 100 × 100 square finite
elements of 1 × 1 m2. A training image [Strebelle, 2002]
depicts the expected patterns of heterogeneity (Figure 1a).
These are highly connected sand channels presenting
pseudo‐horizontal orientation, embedded in a matrix made
of shale. Information contained in the training image includes
(1) proportions of sand and shale, (2) channel width and
orientation, and (3) channel tortuosity. Note that the size of
the training image (250 × 250 m2, also discretized in 1 ×
1 m2 elements) is larger than the simulation domain. Simu-

lations are conditioned to nine lithofacies measurements only
(six at sand and three at shale; Figure 1c). Seismic data
(Figure 1d) are included as correlated, but not conditioning,
exhaustive soft information. The training image for this
secondary variable is depicted in Figure 1b. Figure 1e dis-
plays the ensemble mean of 100 plausible MP lithofacies
simulations conditioned to lithofacies data and correlated
with soft data. Working only with two lithofacies allows one
to interpret Figure 1e as the probability to find sand (p = 1)
or shale (p = 0) at a given element. The stack variance
represents the related uncertainty (Figure 1f). The small
amount of lithofacies data is not sufficient to delineate a
well‐defined sequence of channels. Small clusters of ele-
ments with probability of 1 are found only at the vicinity
of the measurement locations at the sand formations
(Figure 1e). Therefore, the related uncertainties are large, as
depicted in Figure 1f. The uncertainty at the vicinity of
observation wells O7 and O8 is very small. This can be ex-
plained by a strong correlation with soft data in these regions.
Connectivity constraints are not used to generate these li-
thofacies distributions.
[20] The reference lithofacies distribution (Figure 2d) is

randomly selected among the aforementioned 100 MP
plausible simulations. Groundwater flow is expected to be
governed by the spatial distribution of lithofacies and, to a
lesser importance, by the spatial variability of hydraulic
conductivity at the intrafacies. Thus, hydraulic conductivity
is assumed to be constant (10 and 10−3 m/d for sand and
shale, respectively). These values cause a large contrast in
the corresponding reference head field. For simplicity, we
assume steady state groundwater flow. Yet, the methodology
is general and also applies to transient problems. A well
PW, tapping a sandy channel, pumps 21.6m3/d at coordinates
(45, 45). Additionally, a regional steady state groundwater
flow is simulated by prescribing heads at left and right
boundaries (1 and 0 m, respectively). Upper and lower
boundaries are impervious. Figure 2d displays the reference
heads corresponding to this setup. As one can see, the effects
of the pumping and of the channels are noticeable. Refer-
ence heads are collected at the nine available wells depicted
in Figure 1c. Connectivity constraints are also extracted
from the reference lithofacies distribution. These are the
connections of pumping well PW to observation wells O1 to
O4. Thus, we do not forbid a possible connection of obser-
vation well O5 with PW and O1 to O4 (a light gray channel
connects the lower and central sets of channels; Figure 1e).
Obviously, observation wells at different lithofacies cannot
be connected.

4. Results

[21] The performance of the method is evaluated both
qualitatively and quantitatively. From the qualitative point
of view, we compare the lithofacies and head distributions
with the corresponding reference counterparts. In addition,
we analyze the mean and the variance of the final stack. In
this work, the stack is made of lithofacies distributions
leading to values of the objective function smaller than 0.1.
From equation (1), this is equivalent to an average head
residual of 0.105 m, a small value compared to the range of
reference heads [−5.5, 1]. Weights in equation (1) were all
set to 1.0. A total of 24 cases are solved, varying the size of
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Figure 1. Geological setup. (a) Training image of the primary variable [Strebelle, 2002]. (b) Training
image of the secondary variable (seismic data). (c) Measurement locations at sand and shale lithofacies
(circles and crosses, respectively). (d) Exhaustive seismic data. (e) Ensemble mean of 100 plausible
simulations. (f) Corresponding ensemble variance.
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the blocking moving window (12 sizes uniformly distributed,
ranging from 8 to 96 elements) and the conditioning data
(heads only or heads and connectivity constraints). Second-
ary variables are used as correlated soft data and lithofacies
at measurement locations are conditioning data in all cases.
Prior rejection criteria (see step 1.4 in section 2) are not used

in this work. Thus, we will always refer to the posterior
acceptance or rejection of lithofacies distributions described
in the step 4 of the methodology. For a given run, the size
of the blocking moving window is constant throughout the
iterative process. From the quantitative point of view, we
analyze the following statistics.

Figure 2. Algorithm evolution in the absence of connectivity constraints. (a–c) Lithofacies distributions
and corresponding heads attained at early, intermediate, and final stages of the algorithm (iterations 1,
2500, and 4835, respectively; the latter leads to the minimum objective function). The blocking moving
window is depicted by a dashed line. At first iteration it encompasses the whole simulation domain.
(d) Reference lithofacies distribution and reference head field. (e) Mean of the final stack. This can be
interpreted as the probability to find sand (p = 1) or shale (p = 0) at a given element. (f) Corresponding
variance (i.e., related uncertainty). (g) Evolution of head residuals (absolute value of calculated minus
measured values) at measurement locations.
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[22] 1. We analyze the objective function Ftest. A small
value of this measure guarantees a good average fit of
available head measurements.
[23] 2. We analyze the minimum objective function at

iteration “k”:

Fk
min ¼ min

i¼1;k
Fi
test: ð5Þ

[24] 3. We analyze the cumulative sums of accepted and
rejected lithofacies distributions at a given iteration and the
size of the final stack. These criteria report about the quality
of the convergence.
[25] 4. We analyze the head residuals at measurement

locations (i.e., absolute value of the difference between
calculated and measured heads) and the root mean square
error (RMSEh) of heads. The latter does not consider the
errors at measurement locations only but measures the
global reproduction of the reference head field:

RMSEh ¼ 1

Nn

XNn

i¼1

hcalci � hrefi

��� ���2
 !1=2

; ð6Þ

where Nn denotes the number of nodes (10201 in this
case); hcalc and href are the calculated and reference heads
at mesh nodes, respectively.
[26] 5. We analyze the proportion of elements matching

the reference lithofacies distribution.
[27] First, we show the performance of the algorithm in

the absence of connectivity constraints. To this end, we
select a constant, arbitrary, intermediate window size of 48
elements. A large number of iterations (5000) is considered
as the only convergence check. This allows us to gain
insights into the late behavior of the algorithm. Nonetheless,
the stationarity of the process is also analyzed. Figure 2
displays three snapshots of the algorithm at initial, inter-
mediate, and late stages. The first observation that becomes
apparent is the strong effect of the conditioning to head data.
The initial lithofacies distribution (Figure 2a) was selected
purposefully among the plausible simulations in such a way
that the pumping well was isolated from the rest of obser-
vation wells. Thus, the initial lithofacies distribution is far
different from the reference one (Figure 2d). In addition,
observation wells O2 and O4 are disconnected from O1 and
O3 and observation well O5 is connected with O1 and O3.
As expected, simulated heads do not resemble the reference
head field (Figure 2d) and residual heads are very large
(Figure 2g, dashed line). Consequently, the initial objective
function is very large (∼6 · 107; Figure 3) mainly owing to
the large residual at the pumping well. Such a “bad” initial
distribution was selected because we wanted to test the
ability of the algorithm independently of the goodness of its
initial state.
[28] At some early stage of the algorithm (iteration 10, not

displayed here) the blocking moving window encompasses
the pumping well and its connection with observation wells
O1 to O4 is attained. This causes a dramatic drop in the
objective function (from 6 · 107 to 2 · 100; Figure 3). Yet,
this connection might be broken again at any iteration.
Consequently, very large values of Ftest can be attained
throughout the process. Corresponding lithofacies distribu-
tions should be rejected, especially at late stages of the

algorithm. The probability of acceptance or rejection is
controlled by the Gibbs distribution (equation (2)). This
probability depends largely on the temperature of the sys-
tem. In this work, we start with an initial temperature of 15
and cool it every 50 iterations, using a geometric progres-
sion with mean 0.9. At early stages of the process, such a
cooling scheme allows accepting inferior lithofacies dis-
tributions leading to a 10 unit increment in the objective
function, with probability 0.5. In other words, initially we
accept almost all plausible lithofacies distributions and
reject mainly those at which PW is disconnected. The large
number of acceptances of inferior distributions (or equiva-
lently, the small number of rejections) can be observed by
inspecting the slopes of the thin lines in Figure 3.
[29] At intermediate stages of the iterative process (e.g.,

iteration 2500), the algorithm accepts inferior lithofacies
distributions leading to increments in the objective function
of 0.05 only (also with probability 0.5). Thus, the search is
already quite greedy and most of the inferior lithofacies
distributions are rejected. Consequently, only those similar
to the optimum distribution are accepted from now on. At
this stage (in fact, much before), the reproduction of the
reference lithofacies field is already acceptable and the
undesired connections/disconnections at the initial iteration
have been corrected. For instance, PW is connected with
observation wells O1 to O4 and the channel containing O5
is disconnected from the channels in the central part of the
domain. Consequently, the reproduction of the reference
head field is already good, but not good enough. In fact, the
stack contains only 10 members at iteration 2500, possibly
owing to the scarcity of data (these members are potential
local minima of the objective function; Figure 4). Head
residuals (Figure 2g, line with crosses) have diminished
significantly as compared to those at iteration 1, especially
at the pumping well PW. Therefore, the value of the
objective function is small (∼5 · 10−2; Figure 3).
[30] The lithofacies distribution leading to the smallest

objective function (theoretically, the global minimum;
Figure 2c) is attained at iteration 4835, by the very end of
the iterative process. It resembles the connectivity features
of the reference distribution slightly better than that at iter-
ation 2500. The differences between these two lithofacies
distributions are not large. This can be explained by the fact
that the algorithm already extracted the connectivity infor-
mation from head data at iteration 2500. Late iterations of
the algorithm are devoted to better profiling the channels
depicted at intermediate stages and most lithofacies dis-
tributions are rejected (increasing slope of the solid thin line
in Figure 3). However, some new channels (not informed by
data) may still appear, as the one in the upper left corner of
the domain. This effect is ubiquitous during the iterative
process. Still, some of these MP simulations are added to the
stack and are far different from the one that will lead to the
global minimum. Thus, as expected, the amount of simi-
larity and the consequent uncertainty are controlled by the
amount and quality of available information. The repro-
duction of the reference head field is much better. Conse-
quently, the head residuals diminish (Figure 2g, line with
circles) and the minimum value of the objective function is
smaller (∼10−3; Figure 3).
[31] The final stack is, by construction, made of members

of the prior space of models that resemble the prior geo-
logical model as depicted by the training image and
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(1) honor local lithofacies data, (2) correlate with exhaustive
seismic data, and (3) fit available head data well (i.e., stack
members lead to objective function values smaller than 0.1).
The mean and the variance of the aforementioned stack are
depicted in Figures 2e and 2f, respectively. The stack mean
is quite similar to the best lithofacies distribution (Figure 2c)
because the annealing schedule was very greedy. Conse-
quently, the number of rejected distributions was large and
the stack size (390) small compared with the total number of
iterations. The largest uncertainties, as measured by the
stack variance, are found mainly at the contours of the
channels and at areas not informed by measurements (e.g.,
the two channels at the upper left corner). We address the
issue of stationarity of the iterative process by analyzing the

convergence criteria in equation (4) (Figure 4). The stack
starts to be populated after a large number of iterations
(2405). The initial behavior of the stack is quite erratic, what
is translated into large fluctuations of its statistical moments
and their corresponding variations in equation (4). This is
explained by the large differences between the stack mem-
bers at this stage. The annealing temperature is still high,
what allows an exhaustive scanning of the prior space of
models (i.e., the search is completely random). Conse-
quently, the stack members look really different at this stage
and are far different from the optimum MP simulation. This
occurs during ∼4000 iterations, when the annealing tem-
perature is low and new stack members look very similar to
the optimum and do not display features that are not already

Figure 3. Evolution of the objective function in the absence of connectivity constraints. Note that the
left vertical axis is broken in the range (103, 107). The bottom plot shows a selected zoom at early stages
of the algorithm.
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contained in the stack. This is confirmed by the late‐time
pseudohorizontal slopes ofDhLstacki andDsstack

2 in Figure 4.
The addition of a stack member containing new geometrical
features (i.e., deviating from those already contained in the
existing stack) is manifested with peaks in the variation of
the statistical moments. This effect is ubiquitous throughout
the iterative process (Figure 4).
[32] The role of connectivity constraints is best observed

by comparing Figures 2 and 5. In this experiment, the only
difference (from the algorithmical point of view) is that
connectivity constraints are imposed as conditioning data
for the simulation (step 1 in section 2). These restrictions do
not inform about “how” the wells are connected. This
information could be enriched with other sources of data,
that is, travel times, but this issue is out of the scope of this
paper. Still, this makes the algorithm to be far more efficient
and enhances the convergence. In this case, the algorithm

starts with a simulation conditioned to lithofacies and con-
nectivity constraints. For instance, at iteration 1 (in fact, at
any iteration; Figure 5a) the disconnection of PW is not
allowed. Therefore, the objective function is already quite
small (∼2 · 100 versus ∼6 · 107 in the absence of connectivity
constraints; Figure 6). However, the connectivity features of
the reference lithofacies distribution are not yet reproduced
because we still did not condition to heads. As the algorithm
evolves (Figure 5b), reproductions of reference fields are
enhanced and the head residuals become smaller (Figure 5g).
The best lithofacies distribution (Figure 5c) is now attained
at earlier stages (iteration 4421 versus 4835 in the previous
case). The strong effect of conditioning to heads becomes
apparent one more time. From a qualitative point of view,
final reproductions of the reference fields are not very dif-
ferent (Figures 2c and 5c). Consequently, the head residuals
are similar and very small in both cases (Figures 2g and 5g).
The final stack (Figures 5e and 5f) contains 334 lithofacies
distributions and is also similar to the one obtained in the
absence of connectivity constraints. This reveals that the
iterative process was similar and independent of the condi-
tioning data. This is confirmed by the similarity of the
cumulative sum of rejections (thin lines in Figure 6) and of
the stack sizes (Figure 7). Adding connectivity constraints
plays an important role mainly at early stages of the algo-
rithm (Figure 6). In fact, if the number of iterations is large,
information about connectivity can also be extracted from
head data. Yet, using connectivity constraints reduces the
uncertainty of the channels connecting PW with observation
wells O1 to O4 (Figure 5f). The fact that the uncertainties
depicted in Figure 2f (i.e., disregarding connectivity con-
straints) were also small confirms that head data were
already informative about connectivity.
[33] From the above, we conclude that the use of con-

nectivity constraints simply enhances the convergence rate
and speeds up the process. At a given iteration, the resem-
blance of the reference fields is better if connectivity con-
straints are accounted for. Consequently, objective function
values are often smaller than those in the absence of con-
nectivity constraints. However, the global behavior of the
algorithm, as measured by the minimum objective functions
and the final stacks (Figures 6–8) is very similar because the
number of iterations was large. We argue that the
enhancement of the convergence rate is due to the fact that
connectivity constraints reduce the dimension of the prior
space of lithofacies distributions (connected plus discon-
nected) to that of the subspace of connected distributions (to
which the reference solution belongs to). This issue will be
further discussed later.
[34] One of the appealing features of the BMW is its

simplicity. A small number of triggers control the behavior
of the algorithm. Notwithstanding the parameters defining
the annealing schedule (i.e., initial temperature, number of
iterations per temperature step and cooling factor a), the
parameter exerting a major control on the BMW is the size
of the blocking moving window (“ws” hereinafter). Figure 7
displays the stack size obtained using 12 different window
sizes. Regardless of the conditioning data, using a small
window size (ws < 24) is not a good option. In that case,
the stack is empty because only a very small portion of
the domain is perturbed at a given iteration. Therefore, the
probability of obtaining a significant improvement by building
a new channel or creating a new connection between wells is

Figure 4. Stationarity of the process: evolution of (top) the
average of the stack mean and (bottom) the variance of the
stack mean. The stack size is depicted with a thick line in
both cases.
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very small. This result is in agreement with early results in
the McMC literature that perturb one element per iteration
[Oliver et al., 1997]. Still, small window sizes can be used
for better profiling already existing channels. On the con-
trary, large window sizes (ws > 72) perturb a significant
portion of the domain, what makes the scanning too random,

and therefore, inefficient. Yet, a large perturbation can be
useful if there are suspicions of local minima in the objec-
tive function. Similar results were obtained by Fu and
Gomez‐Hernandez [2009] in the context of Gaussian
fields. In either case, finding stack members becomes a hard
task, as revealed by the small (even null) stack sizes in

Figure 5. Algorithm evolution in the presence of connectivity constraints. (a–c) Lithofacies distributions
and corresponding heads attained at early, intermediate, and final stages of the algorithm (iterations 1,
2500, and 4421, respectively; the latter leads to the minimum objective function). The blocking moving
window is depicted by a dashed line. At first iteration it encompasses the whole simulation domain.
(d) Reference lithofacies distribution and reference head field. (e) Mean of the final stack. This can be
interpreted as the probability to find sand (p = 1) or shale (p = 0) at a given element. (f) Corresponding
variance (i.e., related uncertainty). (g) Evolution of head residuals (absolute value of calculated minus
measured values) at measurement locations.
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Figure 7. This bad performance can be alleviated by
increasing significantly the number of iterations. This inher-
ently leads to CPU‐intensive runs and therefore, to inefficiency.
From the above, we recommend an intermediate window size
(if it is constant along the iterative process). A possibility
to circumvent this problem (also implemented in the BMW
but not explored here) consists of defining a probability
distribution of window sizes, rather than a single constant
value. Large probabilities should be assigned to intermediate
sizes and small probabilities (but with long tails) should be
assigned to extreme sizes, either to better profile existing
channels or to cause a large perturbation in the image. Yet,

we fear that the choice of such a pdf (or the constant win-
dow size) is problem dependent. In this particular example,
we found that appropriate window sizes are in the range of
1/4 to 1/2 of the domain size, equivalent to 24 to 48 ele-
ments. Regardless of the absence/presence of connectivity
constraints, the smallest values of the minimum objective
function fall within this range (Figure 7). The mean and the
variance of the calculated stacks are depicted in Figure 8.
The connectivity features are similar for all of them, regard-
less of the conditioning geological data. The main differences
between the stacks are, first, the roughness of the ensemble
mean and, second, the variability, as measured by the stack

Figure 6. Evolution of the objective function in the absence/presence of connectivity data. One in every
twenty values of the test objective functions are depicted. Note that the left vertical axis is broken in the
range (103,107).
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variance. These can be partly explained by the different stack
sizes (Figure 7). Populated stacks (ws = 24) contain a number
of similar lithofacies distributions attained around the opti-
mum one. This reduces the uncertainty and smoothes the
mean. Instead, when the stack contains a few members (ws =
48) a channel that was attained a few times renders a large
contribution to the final stack. Therefore, the stack mean is
rougher and the corresponding variance larger.
[35] Figures 9 and 10 display the statistics of the stack

members. Figure 9 displays the box plots of the objective
functions of stack members. Owing to our definition of
stack member, the maximum value is always 0.1. Regard-
less of the conditioning geological data, the window size
and the stack population, the mean value of the objective
function is always small. This confirms the goodness of the
fits of available head data. The variability of the results, as

measured by the size of the box plots, diminishes with the
window size, but not monotonically. This is an effect of the
stack size. When it is small (i.e., the window size is large) a
few lithofacies distributions lead to objective function va-
lues below the threshold of 0.1. This occurs at late stages of
the algorithm and a large number of iterations would be
necessary to populate the stack better. Intermediate window
sizes (24 to 48) yield the best results, as measured by the
smallest mean values and variabilities. For most window
sizes, adding connectivity constraints reduces the value of
the objective function of stack members, but not substan-
tially. This confirms that the stack is equivalent if the
number of iterations is sufficiently large and that, in such
case, adding connectivity constraints only enhances the
convergence, but not the quality of the stack. The same
conclusions can be observed in Figure 10, which depicts the
box plots describing the reproduction of reference fields.
The proportion of elements that match the reference litho-
facies value is always above 65%. It is worth to mention that
we used 9 lithofacies data only. The mean is around 75% in
all cases, regardless of the conditioning data and the window
size. Box plots of RMSEh are all centered on a small value
and their variability is small. This confirms that the char-
acterizations fit not only the available head data, but also
yield a good overall reproduction of the reference head field.
[36] With regard to numerical performance, a run of this

example using the BMW kernel in its current state (not yet
parallelized) takes about 400 s of CPU time on a single Intel
processor. While this might not look rather time consuming,
the CPU requirements will increase nonlinearly with the
complexity of the problem. This might be an issue for
complex 3‐D transient models. It is well known that tradi-
tional sensitivity‐based optimization methods are far more
efficient than Monte Carlo samplers if the objective function
is smooth and continuous. Yet, this advantage is lost when
the objective function displays discontinuities and an erratic
behavior as in this case. Therefore, even if no exhaustive
tests have been made so far, we expect that the BMW will
obtain a stack of simulations conditioned to available data as
efficiently as other established techniques such as the prob-
ability perturbation method. We believe that an important
factor to accelerate the process is the use of as many proxies
(prior rejection criteria) as possible. This will minimize the
number of forward simulations, which often takes the largest
part of the CPU time per iteration. This should not change the
results but simply avoid the scanning of parts of the prior
distribution of aquifer architectures that are far from the
optimum one and, therefore, have little chances to belong to
the posterior distribution.

5. Conclusions

[37] The BMW couples a multiple‐point simulator for
generating plausible lithofacies distributions conditioned to
geological data with a groundwater flow simulator for the
conditioning to heads. The final output is a stack of MP si-
mulations of plausible aquifer architectures that (1) resemble
a prior geological model depicted by a training image (i.e.,
belong to the prior space of models), (2) are anchored to
available lithofacies data, (3) correlate with secondary
information such as seismic data, (4) honor connectivity
constraints (i.e., point “i” connected with point “j”), and

Figure 7. Stack size and minimum objective function
(Fmin

5000) versus blocking moving window size in the
absence/presence of connectivity data.
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(5) fit state variable data well. In this work, we use a syn-
thetic example to explore the role of the conditioning
data and the sensitivity of the algorithm to its dominant
parameter, that is, the size of the blocking moving window.
The main conclusions arising from this analysis are as
follows:
[38] 1. Notwithstanding other triggers of the algorithm

(e.g., those controlling the cooling schedule), the size of the
blocking moving window has revealed as the dominant
parameter. Using a small window size can be useful for
better profiling already existing channels. However, this
makes the process too greedy and it is hardly possible to find
stack members. Actually, 5000 iterations were not sufficient
for populating the stack with a single member. On the
contrary, using a large window size makes the process too
random and, therefore, inefficient. Yet, it can be a good
option to escape local minima of the objective function. In
either case, a huge number of iterations would be required to
populate the stack, what makes the computational effort
unaffordable. Therefore, intermediate window sizes are re-
commended. Similar results are obtained by Fu and Gomez‐

Hernandez [2009] in the context of Gaussian fields. For the
moment, we did not find a smart way to define the optimum
size a priori. In fact, this depends likely on the size and the
shape of the geological structures, the configuration of the
groundwater flow field and the amount of available data. A
possibility to circumvent this problem consists of using a
probability distribution of window sizes, rather than a con-
stant, user‐defined value.
[39] 2. As already demonstrated by many authors

[Ronayne et al., 2008] in the context of MP geostatistics,
state variable data such as heads contain important infor-
mation about aquifer architecture and connectivity. Condi-
tioning to state variable data enhances dramatically the
initial lithofacies distribution (i.e., anchored to geological
data only).
[40] 3. Adding connectivity constraints as conditioning

data does not improve the quality of the results if the
number of iterations is large enough. However, including
them enhances the convergence of the algorithm because it
reduces the dimension of the search space. This concept can
be implemented in several ways, either as direct geostatis-

Figure 8. Stack mean and variance after 5000 iterations obtained using intermediate blocking moving
window sizes “ws.” Accepted lithofacies distributions leading to values of the objective function smaller
than 0.1 are included in the stack. Corresponding stack sizes are displayed in Figure 7.
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tical conditioning (as in this work) or by means of prior
rejection criteria.
[41] Much remains to be done. Here we do not consider

uncertainties in the prior geological model. These may have
a large impact on the results because different training
images will lead to different stacks. A comparison of the
statistics of those stacks could address the problem of prior
uncertainty of the geological model. In view of the sensi-
tivity analysis, a smart way for the prior definition of the
range of optimum window sizes is required. Alternatively,
our implementation allows the window size to vary through-
out the iterative process. In that case, the blocking moving
window size is randomly sampled from a user‐supplied pdf
(not in this work). This allows us to cause large perturbations
in the aquifer architecture from time to time (i.e., when a
large window size is sampled), what generates new channels
and connections. At the same time, we better profile these
new structures by using a small window size. Yet, the defi-
nition of the pdf of window sizes is not easy and, we fear, is
problem dependent. Self‐adaptive schemes may circumvent
this problem.
[42] In spite of these difficulties, the strengths of the

proposed method lie in its simplicity and flexibility. On the
one hand, a few triggers control the behavior of the algo-
rithm. On the other hand, the BMW can make use of any
geostatistical simulation tool (2‐D, 3‐D, accounting for
multiple‐point statistics or not). It can accommodate easily
any type of direct problem (maybe highly nonlinear). This
allows us to condition to different types of state variables
reporting on aquifer architecture and connectivity in differ-

ent ways. For instance, travel times could be used to inform
about the length of a given connection between observation
wells. The BMW circumvents the problem of continuity and
derivability of the objective function in discontinuous geo-
logical scenarios (i.e., we calculate the value of the objective
function, but not its derivatives with respect to model
parameters). Furthermore, the algorithm guarantees that all
simulated lithofacies distributions lie in the prior space of
plausible simulations defined by the prior geological model.
This may not be satisfied by other traditional sensitivity‐
based inversion techniques that modify the parameter fields
iteratively. This may be accomplished by other simulated
annealing based methods, but the main advantage of the
BMW is that it yields directly an ensemble of samples of the
posterior distribution of parameters (lithofacies distribution
in this case) instead of a single optimal solution. Yet, the
sampling is not exhaustive, as opposed to the classical
McMC approach. In fact, the BMW becomes a McMC
exhaustive sampler by removing the cooling schedule.
[43] Overall, the main drawback of our approach is that it

is computationally demanding. A number of prior rejection
criteria can be evaluated before simulating the state vari-
ables (actually, the most CPU‐intensive part). These should
be based on a fast evaluation of the lithofacies distribution
being tested. Examples are local and directional connectivity
of the training image or the lithofacies proportions. We
foresee that future improvements will focus on the paralle-
lization of the algorithm and on the search of suitable prior
rejection criteria. The results presented here should be

Figure 9. Box plots of the objective function corresponding to lithofacies distributions belonging to the
final stack. The horizontal axis contains different blocking moving window sizes in the absence/presence
of connectivity data (“ws” and “wsc” at left and right, respectively). The numbers in brackets represent the
stack size depicted in Figure 7. Window sizes leading to empty stacks (ws < 24) are not displayed.
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Figure 10. Box plots depicting (top) the proportion of elements matching the reference lithofacies of the
stack members matching the reference lithofacies and (bottom) the root mean square error of heads
RMSEh of the stack members. The horizontal axis contains different blocking moving window sizes in
the absence/presence of connectivity data (“ws” and “wsc” at left and right, respectively). The numbers
in brackets represent the stack size depicted in Figure 7. Window sizes leading to empty stacks (ws < 24)
are not displayed.
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viewed as a hopeful step in the direction of linking multiple‐
point geostatistics and hydrogeology.
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