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Abstract

The pilot points method is often used in nonlinear geostatistical calibration. The method consists of estimating the values of the
hydraulic properties at a set of arbitrary (pilot) points so as to best fit the aquifer response as measured by available indirect observations
(i.e., heads or drawdowns). Though this method remains general and appealing, no prior information of the hydraulic properties is usu-
ally included in the optimization process, which constrains the number of pilot points to ensure stability. In this paper, we present a
modification of the pilot points method, including prior information in the optimization process by adding a plausibility term to the
objective function to be minimized. This results from formulating the inverse problem in a maximum likelihood framework. The perfor-
mance of the method is tested on a synthetic example. Results show that including the plausibility term improves the identification of
heterogeneity. Furthermore, this term makes the inverse problem more stable and allows the use of larger number of pilot points, thus
improving the identification of the heterogeneity as well. Therefore, the use of the plausibility term is recommended.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Heterogeneity plays an important role for groundwater
flow and contaminant transport in geological formations
and needs to be accounted for in meaningful models.
Inverse modeling represents a powerful tool to quantify
the influence of heterogeneity [6,7,15,31,44]. In order to
identify heterogeneity, the groundwater inverse problem
is usually formulated in a geostatistical framework. Early
methods [25,39,20] aimed at estimating at every point the
departure from the mean log transmissivity implied by
head data. These formulations are linear and their compu-
tational cost moderate. They often work fine [45], but as
complexity increases, iterating is needed [9,8,45]. However,
geostatistical formulations estimate log transmissivity at
every cell (or element), so that the nonlinear solutions
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become too expensive unless special numerical methods,
such as the adjoint state method, are used [33]. This allows
successful practical application [34,38] to complex prob-
lems, but it is difficult to program. Therefore, one needs
to reduce the number of unknowns by means of some
parameterization scheme. MacLaughlin and Townley [31]
discuss a number of such schemes. However, the one that
is most flexible and consistent with the geostatistical
assumptions is the pilot points method. Hence, it is not sur-
prising that it has gained steam in recent years.

The pilot points method consists of (Fig. 1): (1) generat-
ing an initial spatially correlated field given a geostatistical
model, (2) defining an interpolation method to obtain the
value of the hydraulic properties over the model domain
on the basis of their measurements and their values at the
pilot point locations (model parameters) and (3) optimizing
the value of the model parameters in such a way that the
interpolated field (step 2) minimizes an objective function
measuring the misfit between calculated and measured data
(often, only heads are considered). Thus, finding the opti-
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Fig. 1. Schematic description of the pilot points method for defining a
spatial random function f(x), as the sum of a drift, fD(x), and a
perturbation fp(x). The drift is defined by conditioning on available
measurements. The perturbation is obtained from interpolation of the
unknown pilot point values (model parameters), which are optimized so as
to obtain a good fit with available indirect observations (i.e., heads).

A. Alcolea et al. / Advances in Water Resources 29 (2006) 1678–1689 1679
mum value of model parameters becomes an optimization
problem. Notice that steps 2 and 3 imply the perturbation
of the field generated in step 1.

This method was originally devised by de Marsily [14],
but has undergone several modifications. RamaRao et al.
[37] and Gómez-Hernández et al. [19] included conditional
simulations in the generation of the initial field. The loca-
tion of the pilot points has been studied by Lavenue and
Pickens [27] and Hendricks-Franssen [23], among others.
The pilot points method has become widely used and has
been applied to different problems [24,42].

However, Cooley and Hill [12] and Cooley [13] identified
some drawbacks. These arise from neglecting sources of
model inaccuracy (i.e., errors in the conceptual model)
and overparameterizing. The latter leads to instability of
the optimization problem [21,22]. Instability implies (a)
large values of some model parameters due to unbounded
fluctuations [2], which also causes (b) large ‘‘jumps’’ in
the value of the hydraulic properties over small distances
and (c) large second derivatives of the hydraulic property
field. Tactics to combat instability are based on addressing
these effects.

A possibility to fight unbounded fluctuations consists of
imposing upper and lower bounds on the model parame-
ters. In the context of pilot points, RamaRao et al. [37]
and Gómez-Hernández et al. [19] use this tactic. However,
in general, this approach simply causes the solution to fluc-
tuate between those arbitrary bounds, but its reliability is
not improved [36].

Instability is attributed to overparameterization. Thus,
the second tactic to circumvent instabilities consists of
reducing the number of model parameters. In the context
of pilot points, a common approach consists of starting
with a single pilot point and adding new candidates at each
iteration of the optimization process [37]. New pilot point
locations are set according to their ability for reducing
the objective function, measured by the sensitivity coeffi-
cients [27]. Other researchers predefine the number of pilot
points, whose location can be fixed (e.g. regular grids of 2–
3 pilot points per correlation range in each direction [3,23])
or vary randomly during the optimization process [23].
Though the use of a small number of pilot points may over-
come instabilities, it leads to three side effects: first, the
identification of the heterogeneity loses resolution; second,
the role of a good geostatistical characterization becomes
critical [16] and third, the problem is very sensitive to the
location of the pilot points [27].

A tactic to avoid large jumps in estimated parameters
consists of penalizing them by adding regularization terms
to the objective function: Tikhonov [40,41] imposes penal-
ties to large values of the model parameters and unwar-
ranted oscillations are penalized by Emsellem and de
Marsily [17]. However, we argue that valuable information
about model parameters is not included in the optimization
process. This can be done by adding a plausibility term to
the objective function, which helps in solving the above
problems, while allowing a formal posing of the inversion
[4,5]. The plausibility term is essentially a regularization
criterion that penalizes the departure of the model param-
eters from their prior estimates (derived from the prior
information of the hydraulic properties).

In the context of pilot points, the inclusion of a regular-
ization term has not been excluded from debate. Two
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trends can be found in the literature. On the one hand,
Certes and de Marsily [10] reject the use of this term, ques-
tioning its performance, as it depends to a large extent on
the reliability of prior estimates. RamaRao et al. [37]
argue that plausibility is achieved inherently, given that
the initial field to be perturbed already honors (1) the
available measurements of the hydraulic property and
(2) the variogram describing the spatial variability pat-
terns as observed in the field. Similar arguments are used
by other researchers for rejecting the plausibility term
[3,19,28,29,43]. Indeed, once the pilot point values have
been estimated, the interpolation in step 2 of Fig. 1 will
be consistent with measurements. However, nothing
assures that the estimation is plausible at the pilot points
themselves. Addressing such inconsistency is one of the
motivations of this work.

On the other hand, regularization has been used by
Doherty [16], who penalizes non-homogeneity of the
interpolated field rather than including the prior estimates
of the model parameters. Kowalsky et al. [26] include a
plausibility term for the first time in the context of pilot
points. These authors seek for an identification of the per-
meability in an unsaturated flow synthetic example, condi-
tioned to hydrogeological data (i.e., saturation profiles at
boreholes and permeability measurements) and geophysi-
cal measurements (ground penetrating radar, GPR) in a
maximum a posteriori (MAP) geostatistical context.
Although they include the plausibility term in the objec-
tive function, its role is not explored and its weighting
is unclear. In addition, they do not introduce correlation
of model parameters in the estimation process (i.e., diag-
onal covariance matrix). In short, a methodology for
proper accounting the plausibility of pilot point values
is still lacking.

The objective of this work is to present such a method-
ology and to show that the use of a plausibility term
improves (1) the identification of heterogeneity and (2)
the stability of the problem. The latter allows the modeler
to use an increased number of pilot points, thus sharpening
the resolution of heterogeneity. For these purposes, the
method of pilot points was implemented in the code
TRANSIN [32], that originally used the zonation approach
within a maximum likelihood statistical framework.

This paper is organized as follows. First, the methodol-
ogy is outlined. Second, the synthetic example and the
results are explored. The paper ends with a discussion of
the results and some conclusions about the use of the plau-
sibility term.

2. Methodology

The proposed method is a modification of the pilot
points method. Modifications include the use of a plausibil-
ity term and the way the vector of model parameters (value
of the hydraulic properties at the pilot point locations) is
updated through the optimization process. It can be sum-
marized as follows (Fig. 1):
• Step 1: Analysis of measurements (hydrogeological, geo-
physical, etc.) and definition of the geostatistical model.
In the example discussed here, the geostatistical model is
defined by the variogram and the measurement error
covariances, but more sophisticated models may be
used. Some of the statistical parameters (e.g. variances
of measurement errors) may remain uncertain.

• Step 2: Parameterization. A hydraulic property f (e.g.
log-transmissivity) is expressed as the superposition of
two fields: a drift fD(x, t) and an uncertain residual
fp(x), which is a linear combination of the model param-
eters pj:

f ðx; tÞ ¼ fDðx; tÞ þ fpðxÞ ð1Þ
• Step 2.1: Calculation of fD(x). The drift can be obtained

through conditional estimation (kriging/cokriging) or
conditional simulation, depending on whether the mod-
eler is seeking the characterization of large scale patterns
or small scale variability, respectively. Therefore, it hon-
ors hard data (e.g. measurements of the hydraulic prop-
erty f*) and possibly soft data (i.e., geophysical data g*

can be considered as external drifts). In the case of con-
ditional simulation, fD(x) reproduces spatial variability
patterns as observed in the field (e.g. it honors the vari-
ogram as well). For the case of linear estimation, it can
be expressed as

fDðx; tÞ ¼
XdimZ

i¼1

kZ
i ðxÞZðxi; tÞ ð2Þ

where x is the location where fD is calculated, t and xi are
the measurement times and locations, respectively, and
kz

i are the (co-)kriging weights for the measurements, or-
ganized in the vector Z = (f*,g*). Our implementation of
the methodology allows a large set of conditional estima-
tion methods: simple kriging, residual kriging, kriging
with locally varying mean, kriging with external drift,
simple cokriging, ordinary cokriging and ordinary cokri-
ging standardized to the mean value of the primary var-
iable. In addition to these methods for conditional
estimation, a sequential simulation algorithm for condi-
tional simulations was implemented.

• Step 2.2: Parameterization of the uncertain residual
fp(x). It can be viewed as the perturbation of fD(x)
required to honor measurements of dependent variables
(heads, concentrations, etc.). It is expressed as a linear
combination of model parameters (value of the hydrau-
lic property at the pilot point locations):

fpðxÞ ¼
XNp

j¼1

kpp
j ðxÞpj ð3Þ

where Np is the number of pilot points used to parame-
terize fp (this number may be different for other hydraulic
property) and kpp

j ðxÞ are the (co-)kriging weights for the
model parameters pj. These weights are calculated in the
same way as kz

i for measurements. In fact, kz
i and kpp

j need
to be calculated jointly. In our implementation, the loca-
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tion of the pilot points can be fixed or vary randomly as
the optimization process proceeds.

• Step 3: Calculation of prior estimates of the pilot point
values p* and corresponding a priori error covariance
matrix Vp, by conditional estimation to measurements
in vector Z. Notice that correlation is included during
the estimation process. As a result, the variance of pilot
points located close to measurement points will be small.
Moreover, pilot point values should be close (i.e., highly
correlated) when pilot point locations are close. There-
fore, Vp is a full matrix, as opposed to diagonal.

• Step 4: Objective function. Following Medina and Car-
rera [33], the optimum set of model parameters mini-
mizes the objective function:

F ¼
Xnstat

i¼1

bi ui � u�i
� �t

V�1
ui

ui � u�i
� �

þ
Xntypar

j¼1

lj pj � p�j

� �t
V�1

pj
pj � p�j

� �
ð4Þ

where ‘‘nstat’’ denotes number of state variables ui with
available measurements u�i and covariance matrix Vui

(i = 1 for heads/drawdowns, i = 2 for concentrations,
i = 3 for fluxes, etc.); ‘‘ntypar’’ is the number of types
of model parameters being optimized, with prior infor-
mation p�j and covariance matrix Vpj

(j = 1 for pilot
points linked to transmissivities, j = 2 for storativities,
etc.) bi and lj are weighting scalars correcting errors
in the specification of Vui and Vpj

. In this work, we used
only drawdown data as state variable for identifying the
heterogeneity of transmissivity (however, the methodol-
ogy is general and can be applied to the estimation of
different hydraulic properties). Thus, we will term here-
inafter Fd the term of drawdowns (s hereinafter) and Fp

the one of model parameters linked to transmissivities,
being the simplified objective function [33]:

F ¼ F dþlF p¼ðs� s�ÞtV�1
s ðs� s�Þþlðp�p�ÞtV�1

p ðp�p�Þ
ð5Þ

The objective function stated in Eq. (4) (or its particu-
larization in Eq. (5)) can be based on favoring the best
match (Fd) and ensuring plausibility and stability (Fp).
However, it can also be derived in a statistical frame-
work. Gavalas et al. [18] derived it by maximizing
the posterior pdf of the model parameters, MAP, while
Carrera and Neuman [4] arrived to it by maximizing
the likelihood of the parameters given the data (maxi-
mum likelihood estimation, MLE). Here, we use the
formulation of Medina and Carrera [33], who prefer
working with the expected value of the likelihood func-
tion, as this allows the most stable estimation of statis-
tical parameters, i.e., bi and lj.

• Step 5: Minimization. The minimization of Eq. (4) is
performed by means of Levenberg–Marquardt’s
method. This method belongs to the Gauss–Newton
family and it consists of linearizing the dependence of
state variables on model parameters, while imposing
that the parameter change Dpk at the k-th iteration is
constrained. This leads to a linear system of equations
[11,30,35]:

ðHk þ dkIÞDpk ¼ �gk ð6Þ
where Hk is an approximation of the Hessian matrix of F

(Eq. (4)) and gk its gradient at pk (vector of model
parameters at iteration k), I is the identity matrix and
dk is a positive scalar (Marquardt’s parameter).

• Step 6: Updating the vector of model parameters. After
each iteration, the vector of model parameters is
updated as

pkþ1 ¼ pk þ Dpk ð7Þ

Prior to updating, the components of vector Dpk are
examined. If any of them is larger than a given thresh-
old, all of them are reduced accordingly. Thus, an upper
bound (per iteration) limits the maximum step size.

Steps 5 and 6 are repeated until one the of the follow-
ing conditions is met [32]: (a) the maximum increment of
parameters (per iteration) is very small, (b) the change in
the objective function between two consecutive itera-
tions is negligible, (c) the gradient norm is very small
or (d) the ratio between the gradient norm and its value
at the first iteration is small enough. The algorithm also
stops if the number of iterations or failed iterations
(those increasing the objective function) reach threshold
values. In our experience, (d) is possibly the best check
of convergence and, in this work, a reduction factor of
10�6 of the norm of the gradient was adopted as indica-
tor of convergence (this condition was achieved in most
of the cases presented in the next section).

To verify uniqueness, it is advisable to repeat the esti-
mation starting from different initial values for model
parameters. Starting from the drift (zero values to model
parameters) is a good strategy. Starting from large val-
ues for pilot point perturbations usually leads to conver-
gence. On the contrary, starting from too low values
often leads to poor convergence.

• Step 7: A posteriori statistical analysis. The optimiza-
tion process is repeated using different values of the
weighting scalars bi and lj, whose optimum values are
the ones leading to the maximum of the expected likeli-
hood, equivalent to the minimum of the support func-
tion [33]:
S2 ¼ N þ ln jHj þ N ln
F
N

� �
�
Xnstat

i¼2

ni ln bi �
Xntypar

j¼1

kj ln lj

ð8Þ
Here, N is the total number of data, ni and kj are the
number of state variable i and parameter type j data,
respectively and H is the first order approximation of
the Hessian matrix of the objective function at the end
of the optimization process.
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3. Application

The objective of this example is to test, first, the role of
the plausibility term in the improvement of the identifica-
tion of heterogeneity, and second, its sensitivity to the
number of pilot points. Results are explored on the basis
of a synthetic example consisting of the simultaneous inter-
pretation of three pumping tests in a square domain of
400 · 400 m2. In essence, the procedure follows the steps
of Meier et al. [34].

The flow domain is enlarged to avoid spurious boundary
effects to a squared global domain of 3800 · 3800 m2

(Fig. 2). Two different finite element discretizations apply,
being more refined the central part (zone of interest).

The ‘‘true’’ log transmissivity field (log10 T hereinafter;
Fig. 2a) was generated with code TRANSIN [32] by
sequential simulation conditional to a set of measurements
defining two channels of high transmissivity. The ‘‘true’’
variogram is spherical, with a range of 200 m and a vari-
ance of 2, without nugget effect. Values of the ‘‘true’’
log10 T field range from �9.1 to 0.5, with a mean value of
�4 [log10 (m2/s)]. In this work, only heterogeneity of the
log10 T field was explored. Storativity was assumed to be
Fig. 2. Test problem description. (a) Flow domain, ‘‘true’’ log10 T field and l
drawdown condition (zero). White square limits the zone of interest. Pumping t
the 13 log10 T measurements (circles denote observation wells, while crosses m
constant and known over the whole domain, with a value
of 10�4.

Thirteen measurements of log10 T were selected from the
‘‘true’’ field as conditioning data. These measurements
were purposefully located in such a way that the initial drift
of Eq. (2) (calculated by ordinary kriging; Fig. 2b) was rad-
ically different from the ‘‘true’’ field (Fig. 2a). Notice that,
indeed, the high log10 T channels crossing the zone of inter-
est are missed by the drift. Thus, the performance of the
model is heavily dependent on the calibration of the pertur-
bation field fp. We chose this setup to ensure that the plau-
sibility term, which biases the estimation towards the drift,
would hinder finding a good solution.

Drawdown data comes from three independent pump-
ing tests (but analyzed simultaneously) in the most produc-
tive wells of the central domain (pumping rates of 10�2 m3/
s at wells B1, B2 and B3 in Fig. 2). Transient drawdowns
were simulated at grid nodes (Fig. 3), assuming a zero
drawdown as initial condition and prescribed at the bound-
aries. Drawdown measurements were calculated at the 13
points where log10 T measurements are available (a total
of 936 drawdown data). A Gaussian white noise was added
to those measurements, simulating acquisition errors, with
ocation of conditioning measurements. All boundaries have a prescribed
ests are performed independently at points B-1, B-2 and B-3. (b) Kriging of
ark pumping wells).



Fig. 3. ‘‘True’’ drawdowns after pumping (t = 7200 s) at wells B-1 (a), B-2 (b) and B-3 (c). The zone of interest (central square of 400 · 400 m2) has been
enlarged 200 m each side.
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a standard deviation of 0.3 m for pumping at wells B1 and
B2 and 0.15 m at well B3 (1% of the maximum drawdown
at each one of the tests).

A total of 28 cases were solved, varying the weighting
factor l (Eq. (5)) and the number of pilot points employed.
To explore the role of the plausibility term, seven values of
l were tested, ranging from 10�3 to 102 (lower values were
not considered due to convergence problems). This range
of values was selected by taking into account that the opti-
mum value of l should be one if the variogram is error-free
(log10 T variogram used in the calibrations was the ‘‘true’’
one). High values of l give too much weight to the plausi-
bility term. This should result in a poor identification of
heterogeneity, as the estimation would be biased towards
the kriged field (Fig. 2). On the contrary, small values of
l tend to disregard the plausibility term, thus risking
instability.

Regarding the number and location of pilot points, four
regular networks were tested, containing 41, 65, 97 and 241
pilot points (Fig. 5, column 1). Sixteen of them are located
in the outer part of the domain (coarse discretization in
Fig. 2). The remaining ones (i.e., 25, 49, 81 and 225, respec-
tively) fall within the zone of interest, corresponding to 2.5,
3.5, 4.5 and 7.5 pilot points per correlation range in each
direction. Notice that only the coarsest network, contain-
ing 41 pilot points, acknowledges the ‘‘rule of thumb’’ of
using 2–3 pilot points per correlation range [3,23]. Observe
that the number of log10 T measurement locations does not
constrain the number of pilot points (13 log10 T measure-
ment locations versus a minimum of 41 pilot points), due
to the inclusion of the plausibility term.

Additionally, we explored the sensitivity of the conver-
gence rate to the threshold value limiting the maximum
variation of model parameters after each iteration of the
Levenberg–Marquardt’s method. Values of 0.1, 1 and 2
orders of magnitude of variation were tested.

4. Results

The performance of the method was evaluated both
qualitatively (log10 T maps and drawdown fits) and quanti-
tatively. For the latter, an error vector e is defined as the
difference between calculated and ‘‘true’’ values of log10 T
at the zone of interest (1600 blocks of 10 · 10 m2). We ana-
lyzed the following statistics:

(1) Total objective function and its drawdowns and
parameters components (F, Fd and Fp in Eq. (5),
respectively). These are not good comparison criteria
as they grow (Fd and F) or decrease (Fp) monotoni-
cally with l.

(2) Support function of the expected likelihood (Eq. (8)),
whose minimization should lead to the optimum
value of l.

(3) Mean absolute error: measures the match between
calculated and ‘‘true’’ values of log10 T.



Table 1
Summary of results of the sensitivity analysis to the weighting factor l and to the number of pilot points

Test problem Objective function (Eq. (5)) Estimation errors

Np, number of
pilot points

Weighting
factor l

Total objective
function (F)

Drawdown objective
function (Fd)

Parameter
objective
function (Fp)

S2

(Eq. (8))
�elog10T

(Eq. (9))
RMSElog10T

(Eq. (10))

– l!1 1.156 · 106 1.156 · 106 – – 1.390 1.831

41 10�3 1161 1158 3254 1399 3.534 5.146
10�2 1192 1166 2663 1358 3.416 4.988
10�1 1390 1196 1945 1455 2.913 4.241
3 · 10�1 1708 1287 1402 1516 2.492 3.887
100 3638 2377 1261 2345 2.629 3.878
101 6571 3496 308 2885 1.853 2.632
102 34,050 16,160 179 4462 1.848 2.456

65 10�3 756 754 1753 1109 1.704 2.705
10�2 768 758 1049 1027 1.343 1.983
10�1 826 778 480 1014 1.157 1.685
3 · 10�1 905 805 453 1068 0.999 1.389
100 1105 844 261 1237 0.992 1.363

101 3953 1682 227 2450 1.302 1.842
102 19,141 6091 131 3995 1.505 2.062

97 10�3 741 737 3690 1214 2.016 2.938
10�2 759 744 1501 1075 1.431 2.080
10�1 787 753 348 1007 0.961 1.331

3 · 10�1 875 784 302 1074 0.950 1.386
100 1033 829 203 1205 1.025 1.456
101 3070 1318 175 2267 1.408 2.001
102 17,426 5566 119 4018 1.525 2.081

241 10�3 726 723 2681 1321 1.749 2.503
10�2 736 727 851 1188 1.151 1.577
10�1 771 744 273 1116 0.771 1.034

3 · 10�1 816 760 188 1131 0.852 1.142
100 922 787 135 1227 0.809 1.090
101 2835 1185 108 2479 1.194 1.758
102 15,358 4598 105 4423 1.525 2.138

Minimum values for each set are written in bold characters.
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Fig. 4. Log-transmissivity estimation errors versus l, weighting factor of the plausibility term: (a) Mean error �elog10T , (b) Root mean square error
RMSElog10T (dashed horizontal line displays theoretical threshold value of

ffiffiffi
2
p
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�elog10T ¼
1

1600

X1600

i¼1

jeij ¼
1

1600

X1600

i¼1

jlog10T calc� log10T truej

ð9Þ
We used this criterion rather than the raw one measuring
the estimation bias (identical but without absolute value),
given that the latter, also evaluated, was close to zero in
most cases, as expected. Therefore, it did not shed new light
to this research.
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(4) Root mean square error of log10 T: this is the basic
raw criterion to evaluate the goodness of the identifi-
cation. Theoretically, it should be smaller than the a
priori deviation (square root of the variogram sill,ffiffiffi

2
p

in this case), if conditioning is good. The analo-
gous magnitude for drawdowns, RMSEd, was also
calculated.
Fig. 5. Qualitative comparison of results: Row 1. ‘‘True’’ log10 T field and me
ordinary kriging of the log10 T measurements). Rows 2–5 display log-transmiss
with varying number (Np) of pilot points (circles in column 1) and weighting fa
information (consistently worst estimation errors; column 1). They look too sm
‘‘true’’ field when both optimum weight and a large number of pilot points ar
column 2; in the insets, the corresponding values of l).
RMSElog10T ¼
1

1600
ete

� �1=2

ð10Þ

Table 1 summarizes the results concerning the identifica-
tion of heterogeneity. Figs. 4a and b display the quantitative
comparisons in terms of the estimation errors, �elog10T and
RMSElog10T . Qualitative comparisons of log10 T estimates
asurements, common scale bar and the drift to be perturbed (obtained by
ivities obtained after conditioning to log10 T and drawdown measurements
ctor l. Results look unstable when little weight (10�3) is assigned to prior

ooth when too much weight (102) is assigned (column 3). They resemble the
e used (optimum identification as measured by criterion S2 is displayed in
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are presented in Fig. 5. Fig. 6 displays the best matching of
drawdown data (l equals 10�3).

The first observation that becomes apparent from Table
1 is the strong effect of the plausibility term. The relative
importance given to this term is measured by the value of
the weighting factor l. Using small values of l (small
importance of the plausibility term, disregarding the prior
estimates in the optimization process) consistently leads to
the minimum value of Fd (best fit of drawdowns, Fig. 6)
and to the worst identification of log10 T in all cases
(Fig. 5, column 1). That is, for any given number of pilot
points, largest estimation errors, as measured by �elog10T

and RMSElog10T , are obtained for values of l = 10�3. In this
case, the lack of constraint in the plausibility term makes
Fig. 6. Time evolution of measured (circles) and computed (lines) drawdowns
scalar of the plausibility term is 10�3 (best fit of measured drawdowns). The
RMSEd, are presented in the insets. Notice that the fits for 41 and 241 pilot poi
log10 T fields (Fig. 5, column 1) and the calculated RMSEd. In fact, they are visu
in Table 1). The fit for 41 pilot points is not as good, but would also be consid
sole criterion for the identification of transmissivities.
the problem somewhat unstable. Thus, estimated values at
pilot point locations fluctuate wildly, leading to a ‘‘lumpy’’
appearance of the solution (Fig. 5, column 1). Similar
appearance of estimated fields can be found in Zimmerman
et al. [45] and Alcolea et al. [1]. The use of variable locations
of the pilot points helps alleviating this problem [23].

Similarly, large values of the weighting factor also yield
poor results. The final solution tends to be too smooth
(Fig. 5, column 3), because it is biased towards the drift,
which contains little information about the actual variabil-
ity of the ‘‘true’’ field. In fact, the second largest values of
the estimation errors (�elog10T and RMSElog10T ) were obtained
with a value of 102 for l in three (65, 97 and 241 pilot
points) out of the four sets of pilot points.
in response to pumping in B-3 at selected observation points. Weighting
number of pilot points and the root mean square error of drawdowns,

nts are very similar, despite the large differences between the corresponding
ally identical for all runs with drawdown objective function below 1000 (Fd

ered acceptable. This implies that fitting drawdowns cannot be used as the
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Fig. 7. CPU time (s) required for one iteration of the algorithm (steps 5
and 6). Results obtained in a Pentium IV platform.
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Optimum identifications (Fig. 5, column 2), as measured
by criterion S2 (Eq. (8)), are obtained when l equals 10�1,
except when the number of pilot points is small (41 pilot
points), while Fd increases minimally (i.e., the fit of draw-
downs does not deviate too much from its optimum,
obtained when l = 10�3). We attribute this value (theoret-
ically it should have been 1) to the procedure for designing
the ‘‘true’’ field. This field is not typically multigaussian as
assumed in this application. The fact that the method
reacts by lowering l (with respect to its theoretical opti-
mum) suggests that the procedure is indeed robust with
respect to the basic assumptions of the geostatistical model.

A disturbing finding is that, if the plausibility term is not
weighted properly, the identification of the heterogeneity is
even worse than the drift, calculated by conditional estima-
tion to values of hydraulic property only (i.e., not condi-
tioning to drawdown data). However, the use of a
maximum likelihood framework allows the estimation of
the weighting factor l (step 7 in the methodology). There-
fore, the use of the plausibility term is advisable.

Regarding the number of pilot points, estimation errors
decrease substantially when using more than 41 pilot
points. Mean error (Fig. 4a) shows that, above this num-
ber, the improvement is small. However, the estimation
variance (Fig. 4b) is reduced considerably only when a
large number of pilot points is used (97 and 241). In fact,
the estimation variance is smaller than the a priori devia-
tion only in these cases and near the optimum weight of
the plausibility term. In addition, the identification of het-
erogeneity gains precision (Fig. 5, column 2) as the number
of pilot points increases. A similar conclusion can be
obtained (regardless of the importance of the plausibility
term) concerning drawdown data matching. Even though
the fits using 41 and 241 pilot points are very similar
(Fig. 6), the drawdown component of the objective func-
tion (Fd, Table 1) decreases as the number of pilot points
increase. Thus, the larger is the number of pilot points,
the better is the match to drawdown data and the identifi-
cation of heterogeneity. On the other hand, CPU time
required for the calibration increases proportionally to
the number of pilot points (Fig. 7).

Concerning convergence rate (i.e., number of iterations
in the different cases), each of the 28 basic cases in Table
1 was repeated three times, using different threshold values
to limit the size of the updating vector (values 0.1, 1 and 2
were explored, allowing modifications of the model param-
eters of 0.1, 1 and 2 orders of magnitude, respectively, at
each iteration of the optimization process). For any basic
case, both qualitative and quantitative results of the three
runs were almost identical, varying only the number of iter-
ations of the optimization process (i.e., the smaller is the
threshold variation prescribed, the larger is the number
of iterations needed for yielding the same solution). The
number of iterations needed with a threshold value of 0.1
is about twice the one needed for a value of 2 (number of
iterations was similar using values of 1 and 2). Therefore,
setting too restrictive bounds in the variations of model
parameters does not make sense, because the computa-
tional effort increases while the solution remains unaltered.

5. Conclusions

A modification of the pilot points method has been pre-
sented, including a plausibility term in the optimization
process. The suggested approach was tested on a synthetic
example, exploring three items concerning the identifica-
tion of heterogeneity: (1) the role of the plausibility term,
(2) the sensitivity to the number of pilot points and (3)
the effect of reducing the variation of the model parameters
during the inversion process.

Regarding the role of the plausibility term, we have
found that neglecting it, which is the standard approach
in the context of pilot points, leads to the best fit of draw-
down data, but to an unstable identification of the model
parameters. This instability is translated in large variations
of the model parameters and manifested qualitatively in a
‘‘lumpy’’ appearance of the estimated field. On the con-
trary, to give too much importance to the plausibility term
biases the solution towards the drift. If the geostatistical
model contains little information of the actual variability
patterns (as in this case), the estimated field yields also a
poor identification of the heterogeneity.

In fact, a disturbing finding is that, in most cases, condi-
tioning to drawdown data worsens the results if the plausi-
bility term is not weighted properly. However, the use of a
statistical framework (maximum likelihood in this case)
allows the estimation of the optimum weight of the plausi-
bility term. In the synthetic example, values ranging from
0.1 to 1 (the latter was the theoretical optimum) offered
the best identifications of the heterogeneity, as measured
by the estimation errors, while drawdown fits were close
to the optimum ones, obtained when l is minimum. It
should be noticed that good fits to measured drawdowns
were obtained when neglecting (assigning very low weights
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to) prior information. Still, nearly as good fits were
obtained with stable estimations when moderate weights
were assigned to prior information.

Concerning the number of pilot points, the comparison
of the estimation errors has shown that the use of a refined
network with a large number of pilot points offers a precise
identification of the heterogeneity and a good fit of draw-
down data, while reducing the importance of a good geo-
statistical characterization. In short, the use of the
plausibility term permits the use of a large number of pilot
points, thus overcoming the risk of instabilities. In fact, one
should use as large a number of pilot points as computa-
tionally feasible.

It should be stressed that the nature of the example did
not favor the use of a plausibility term. First, a large num-
ber of drawdown data, coming from three different tests,
was available. Therefore, one would tend to think that
the problem is well posed and that little is gained by adding
plausibility. Second, prior information was not very good.
Only 13 measurement points were available and they
missed the channels of the true field (recall Fig. 2). There-
fore, one might fear that the plausibility term would bias
the estimation to a wrong solution, as indeed occurred
when too much weight was given to this term. The fact that
the solution was still good suggests that the approach is
robust. We attribute the relatively low weight assigned to
prior information to the fact that reality was not really
multigaussian, as assumed.

The inclusion of a reduction factor in the variation of
the model parameters does not offer any improvement to
the identification of the heterogeneity. Results using three
values of this reduction factor yield virtually identical
results in all runs. Thus, the reduction in the variation of
the model parameters only adds computational effort,
while the solution remains unchanged.

Finally, we stress that the prior information is a valuable
data for quantifying heterogeneity, even when it is poorly
informative. Thus, the use of a plausibility term including
this information (usually disregarded in the context of pilot
points) needs to be considered.
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