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"All our science, measured 

against reality, is primitive and 

childlike and yet it is the most 

precious thing we have." 
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ABSTRACT 
 

 

 

 

 

Heterogeneity exerts a major control on groundwater flow and contaminant transport. 

Geostatistical inversion represents a powerful tool to characterize heterogeneity. The 

pilot points method (PPM) is arguably the most flexible and widely used among the 

inverse approaches. However, the PPM also suffers shortcomings. These arise from 

instability of the inverse problem. A traditional tactic to combat instabilities consists of 

adding a regularization term to the objective function. Surprisingly, this option had not 

been applied to the PPM in a consistent manner. This dissertation aims at filling this 

gap. A modification of the PPM (termed ‘regularized pilot points method’, RPPM) is 

presented. The main novelty consists of the addition of a plausibility term, which 

quantifies the departure of model parameters from their prior estimates. This term 

improves the identification of heterogeneity and the stability of the problem. This thesis 

consists of four self-contained papers.  

 

The methodology is presented in the first paper and its performance is explored 

on a synthetic example. The method aims at obtaining the conditional estimation of 

logT from direct measurements of both logT and dependent variables (drawdowns in 

this case). Emphasis is placed on assessing the weighting of the plausibility term, which 

quantifies the importance of the prior information of parameters in the calibration. 

Results show that neglecting plausibility, which is the standard option in the context of 

PPM, leads to the best fit of dependent variables, but to an unstable identification of 

model parameters. On the contrary, giving too much importance to plausibility (i.e., 

disregarding dependent variable measurements) biases the solution towards the prior 

information. Thus, a proper weighting of the plausibility term is needed. This is done in 

the statistical framework of maximum likelihood estimation. This results in not only 
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statistical consistency and increased stability, but also enhanced resolution. The added 

stability allows the use of as many pilot points as computationally feasible (what 

contradicts the traditional use of the PPM).  

 

These results are extended to the case of conditional simulation in the second 

paper. That is, the possibility of using the plausibility term in the case of seeking 

stochastic simulations of the property conditioned to direct measurements and 

dependent variables is explored. Results show that optimal weighting of the plausibility 

term is also necessary. However, to search this optimum for each conditional simulation 

can be tedious. A key finding of this work is that, for most simulations, the optimum 

value of the weighting factor of the plausibility term is the same as the one obtained by 

conditional estimation. This frees the modeller of the burden of having to seek the 

optimum weight for each simulation (usually a large number), but to obtain it just once 

using the RPPM in its variant of conditional estimation.  

 

In the third paper, the RPPM is framed in the context of the universal scaling 

theory. The objective of this paper is to test the ability of the RPPM for reproducing the 

small scale variability of hydraulic conductivity. Accepting that this variability cannot 

be identified, the effect of the presence of small scale variability in the identification of 

large scale patterns of connectivity is analysed. In parallel, whether including small 

scale variability allows us to reproduce tailing in simulated breakthrough curves 

(BTCs). Results show that adding a component of small scale variability leads to 

increased tailing in breakthrough curves. Furthermore, the main features of BTCs 

(arrival time, peak concentration and slope of the tail) are reproduced. At the same time, 

the main patterns of connectivity are represented. This suggests that, even though the 

small scale variability cannot be identified accurately, it must be accounted for in 

meaningful transport simulations. 

 

The motivation of the fourth paper was the hydraulic characterization of a 

contaminated site as a first step to the design of a remediation system. This design 

demands a reliable characterization of hydraulic connectivity patterns, which are best 

measured by hydraulic diffusivity. It can be derived using the tidal response method 

(TRM), which is a closed-form solution. Unfortunately, the conventional TRM assumes 

homogeneity. The objective of this work is to overcome this limitation and use tidal 
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response to identify preferential flow paths.  Spatial variability is characterized using 

the RPPM. The procedure requires joint inversion with pumping test data to resolve 

diffusivity into transmissivity and storage coefficient. Actual application is complicated 

by the need to filter tidal effects from the response to pumping and by the need to deal 

with different types of data, which is addressed using maximum likelihood methods. 

Application to a contaminated artificial coastal fill leads to flow paths that are consistent 

with the materials used during construction and to solute transport predictions that 

compare well with observations. It is concluded that tidal responses can be used to 

identify connectivity patterns. 
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RESUMEN 
 

 

 

 

 

La heterogeneidad controla el flujo de agua y el transporte de contaminantes en el 

subsuelo. La inversión geoestadística es una potente herramienta para caracterizar la 

heterogeneidad. De entre las metodologías de problema inverso, el método de los 

puntos piloto (PPM) es posiblemente el más flexible y uno de los más ampliamente 

utilizados. Pese a ello, el PPM algunos inconvenientes debidos a la inestabilidad del 

problema inverso. La inestabilidad se suele paliar añadiendo un término de 

regularización a la función objetivo. Sorprendentemente, esta opción no había sido 

contemplada de forma consistente en el PPM. Esta tesis pretende rellenar ese vacío. Se 

presenta una modificación del PPM (llamada método regularizado de puntos piloto, 

RPPM), cuya novedad consiste en la inclusión de un término de plausibilidad.  Este 

término, que cuantifica la desviación de los parámetros del modelo con respecto a su 

información previa, mejora la identificación de la heterogeneidad y añade estabilidad al 

problema. Esta tesis contiene cuatro artículos autocontenidos. 

 

 En el primer artículo se presentan la metodología y su aplicación a un ejemplo 

sintético. El RPPM se utiliza para obtener la estimación condicionada de logT a partir 

de datos de dicha propiedad y de otras variables dependientes de ella (descensos en este 

caso). Se enfatiza en la ponderación del término de plausibilidad, que cuantifica la 

importancia de la información previa de los parámetros en la calibración. Los resultados 

muestran que despreciando la plausibilidad (opción habitual en el contexto del PPM) se 

obtienen los mejores ajustes de las variables dependientes, pero las identificaciones de 

los parámetros son inestables. Por contra, dar demasiada importancia a la plausibilidad 

(despreciando las medidas de las variables dependientes) hace que la solución tienda a 

la información previa. Por tanto, el término de plausibilidad debe ponderarse de forma 
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apropiada. Esta ponderación se lleva a cabo en el contexto geoestadístico de máxima 

verosimilitud, lo que confiere no sólo consistencia estadística y un incremento de la 

estabilidad, sino también resolución adicional. La estabilidad añadida permite usar 

tantos puntos piloto como un esfuerzo computacional razonable tolere, lo que contradice 

el uso tradicional del PPM. 

 

 Estos resultados se extienden al caso de simulación condicionada en el segundo 

artículo. En él se explora la posibilidad de usar el término de plausibilidad en el caso de 

buscar simulaciones estocásticas de la propiedad condicionadas a las medidas directas y 

de las variables dependientes. Los resultados muestran que también se requiere una 

ponderación óptima del término de  plausibilidad. Hallar este óptimo para cada 

simulación puede resultar tedioso. Sin embargo, un hallazgo clave de este trabajo es 

que, para la mayoría de las simulaciones, el valor óptimo del factor de ponderación del 

término de plausibilidad es el mismo que se obtiene en el caso de estimación 

condicionada. Esto libera al usuario del tedio de buscar el peso óptimo para cada 

simulación (generalmente un gran número) y obtenerlo una sola vez usando el RPPM en 

su variante de estimación condicionada. 

 

 En el tercer artículo se enmarca el RPPM en el contexto de la teoría de escalado 

universal. El objetivo de este artículo es probar la habilidad del RPPM para reproducir 

la variabilidad a escala pequeña de la conductividad hidráulica. Aceptando que dicha 

variabilidad no puede identificarse, se analiza su efecto en la caracterización de los 

patrones de conectividad a escala grande. En paralelo, se investiga si la inclusión de la 

variabilidad a escala pequeña permite reproducir las colas de las curvas de llegada 

(efecto de ‘tailing’). Los resultados muestran que añadiendo una componente de 

variabilidad a escala pequeña se consigue un mayor efecto de ‘tailing’ en las curvas de 

llegada. Además, se reproducen las características principales de éstas (tiempo de 

llegada, concentración de pico y pendiente de la cola). Al mismo tiempo se consigue 

reproducir los patrones principales de conectividad. Esto sugiere que, pese a que la 

variabilidad a escala pequeña no se puede identificar con precisión, debe tenerse en 

cuenta en las simulaciones de transporte. 

 

 La motivación del cuarto artículo es obtener la caracterización hidráulica de un 

acuífero contaminado, como paso previo al diseño de un sistema de remediación. Dicho 
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diseño requiere una caracterización fiable de los patrones de conectividad hidráulica. La 

mejor medida para identificarlos es la difusividad hidráulica, que puede obtenerse por 

aplicación del método de respuesta a la marea (‘tidal response method’, TRM). 

Desafortunadamente, el TRM convencional asume homogeneidad. El objetivo de este 

artículo es salvar esa limitación y usar la respuesta a las mareas para identificar caminos 

preferentes de flujo, usando el RPPM para caracterizar la variabilidad espacial. El 

procedimiento requiere la inversión conjunta de la respuesta a las mareas y de datos de 

ensayos de bombeo para obtener estimaciones separadas de transmisividad y coeficiente 

de almacenamiento. La aplicación a un acuífero real resulta complicada por la necesidad 

de filtrar el efecto de la marea del efecto del bombeo y por la necesidad de manejar 

distintos tipos de datos, para lo que se utiliza el método de máxima verosimilitud. La 

aplicación a un relleno artificial contaminado cercano a la costa identifica caminos 

preferentes de flujo consistentes con los materiales usados durante la construcción y a 

predicciones de transporte comparables con los datos medidos. Se concluye que la 

respuesta a las mareas se puede utilizar para la identificación de caminos preferentes de 

flujo. 

 

  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 vii



 

 viii



 

 

 

RESUM 
 

 

 

 

 

L'heterogeneïtat controla el flux de l’aigua i el transport de contaminants en el subsòl. 

La inversió geoestadística és una potent eina per a caracteritzar l'heterogeneïtat. Entre 

les metodologies de problema invers, el mètode dels punts pilot (PPM) és possiblement 

el més flexible i un dels més àmpliament utilitzats. Malgrat això, el PPM presenta 

alguns inconvenients deguts a la inestabilitat del problema invers. La inestabilitat sol 

pal·liar-se afegint un terme de regularització a la funció objectiu. Sorprenentment, 

aquesta opció no havia estat contemplada de forma consistent en el PPM. Aquesta tesi 

pretén emplenar aquest buit. Es presenta una modificació del PPM (que s’anomena 

mètode regularitzat de punts pilot, RPPM), la novetat de la qual consisteix en la inclusió 

d'un terme de plausibilitat. Aquest terme, que quantifica la desviació dels paràmetres del 

model pel que fa a la seva informació prèvia, millora la identificació de l'heterogeneïtat 

i afegeix estabilitat al problema. Aquesta tesi conté quatre articles autocontinguts. 

 
En el primer article es presenten la metodologia i la seva aplicació a un exemple 

sintètic. El RPPM s'utilitza per a obtenir l'estimació condicionada de logT a partir de 

dades d'aquesta propietat i d'altres variables depenents d'ella (descensos en aquest cas). 

S'emfatitza en la ponderació del terme de plausibilitat, que quantifica la importància de 

la informació prèvia dels paràmetres en el calibratge. Els resultats mostren que 

menyspreant la plausibilitat (opció habitual en el context del PPM) s'obtenen els millors 

ajustaments de les variables depenents, però les identificacions dels paràmetres són 

inestables. Per contra, donar massa importància a la plausibilitat (menyspreant les 

mesures de les variables depenents) fa que la solució tendeixi a la informació prèvia. 

Per tant, el terme de plausibilitat ha de ponderar-se de forma apropiada. Aquesta 

ponderació es du a terme en el context geoestadístic de màxima versemblança, el que 
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confereix no només consistència estadística i un increment de l'estabilitat, sinó també 

resolució addicional. L'estabilitat afegida permet utilitzar tants punts pilot com un esforç 

computacional raonable toleri, el que contradiu l'ús tradicional del PPM. 

 
Aquests resultats extenen al cas de simulació condicionada en el segon article. 

En ell s'explora la possibilitat d’utilitzar el terme de plausibilitat en el cas de buscar 

simulacions estocàstiques de la propietat condicionades a les mesures directes i de les 

variables depenents. Els resultats mostren que també es requereix una ponderació 

òptima del terme de plausibilitat. Trobar aquest òptim per a cada simulació pot resultar 

tediós. No obstant això, una troballa clau d'aquest treball és que, per a la majoria de les 

simulacions, el valor òptim del factor de ponderació del terme de plausibilitat és el 

mateix que s'obté per a l'estimació condicionada. Això allibera a l'usuari del tedi de 

buscar el pes òptim per a cada simulació (generalment un gran nombre) i obtenir-lo una 

sola vegada usant el RPPM en la seva variant d'estimació condicionada. 

 
En el tercer article s’emmarca el RPPM en el context de la teoria d'escalat 

universal. L'objectiu d'aquest article és provar l'habilitat del RPPM per a reproduir la 

variabilitat a escala petita de la conductivitat hidràulica. Acceptant que aquesta 

variabilitat no pot identificar-se, s'analitza el seu efecte en la caracterització dels patrons 

de conectivitat a escala gran. En paral·lel, s'investiga si la inclusió de la variabilitat a 

escala petita permet reproduir les cues de les corbes d'arribada (efecte de ‘tailing’). Els 

resultats mostren que afegint una component de variabilitat a escala petita s'aconsegueix 

un major efecte de ‘tailing’ en les corbes d'arribada. A més, es reprodueixen les 

característiques principals d'aquestes (temps d'arribada, concentració de pic i pendent de 

la cua). Al mateix temps s'aconsegueix reproduir els patrons principals de conectivitat. 

Això suggereix que malgrat que la variabilitat a escala petita no es pot identificar amb 

precisió, ha de tenir-se en compte en les simulacions de transport. 

 
La motivació del quart article és obtenir la caracterització hidràulica d'un aqüífer 

contaminat, com pas previ al disseny del sistema de regeneració. Aquest disseny 

requereix una caracterització fiable dels patrons de conectivitat hidràulica. La millor 

mesura per a identificar-los és la difusivitat hidràulica, que pot obtenir-se per aplicació 

del mètode de resposta a la marea (‘tidal response method’, TRM). Desafortunadament, 

el TRM convencional assumeix homogeneïtat. L'objectiu d'aquest article és salvar 

aquesta limitació i usar la resposta a les marees per a identificar camins preferents de 
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flux, usant el RPPM per a caracteritzar la variabilitat espacial. El procediment requereix 

la inversió conjunta de la resposta a les marees i de dades d'assajos de bombament per a 

obtenir estimacions separades de transmisivitat i coeficient d'emmagatzematge. 

L'aplicació a un aqüífer real resulta complicada per la necessitat de filtrar l'efecte de la 

marea de l'efecte del bombament i per la necessitat de manipular diferents tipus de 

dades, per el que s'utilitza el mètode de màxima versemblança. L'aplicació a un terreny 

format per un rebliment artificial contaminat proper a la costa identifica camins 

preferents de flux consistents amb els materials emprats durant la construcció i a 

prediccions de transport comparables amb les dades mesurades. Es conclou que la 

resposta a les marees es pot utilitzar per a la identificació de camins preferents de flux. 
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INTRODUCTION 
 

 

 

 

 

Heterogeneity has a large impact on groundwater flow and contaminant transport 

(Dagan, 1989; Carrera, 1993). Hydraulic conductivity K is the hydraulic parameter 

which exhibits most variability (Fogg et al, 2000). K displays many scales of 

heterogeneity at any given sample size (Neuman, 1990). For simplicity, only two scales 

are considered for modelling purposes: large scale heterogeneity, defined by the spatial 

patterns of connectivity, and small scale variability, defined by high frequency 

fluctuations of the property.  

 

Inverse modelling represents a potentially powerful tool to characterize 

heterogeneity. Inversion is formulated in a geostatistical framework. Geostatistical 

inverse approaches estimate logK at every cell (or element). The optimum set of model 

parameters minimizes an objective function that quantifies the misfit between calculated 

and measured data. Often, only state variable data (e.g., heads) are considered and prior 

information of model parameters is disregarded. The formulation of these approaches is 

often non linear, so that solution of complex problems becomes too expensive. 

Therefore, one needs to reduce the number of unknowns by means of a parameterization 

scheme (McLaughlin and Townley, 1996).  

 

The pilot points method is arguably the most flexible and widely used among 

parameterization schemes. This method was originally devised by de Marsily (de 

Marsily et al, 1984) and it has been applied to a number of problems (Vesselinov et al, 

2001; Hernandez et al, 2003, among others). Yet, it suffers a number of limitations 

which have not been excluded from debate. First, the original method of de Marsily 

obtained the spatially correlated field through conditional estimation. This yields a 

single ‘best’ solution that minimizes the estimation error variance and honours available 

 I-1



measurements of the property. However, the resulting field is oversmoothed and does 

not allow a realistic representation of heterogeneity. To overcome this problem, some 

authors (RamaRao et al, 1995; Gomez-Hernandez et al, 1997; Capilla et al, 1997; 

Hendricks-Franssen, 2001) included conditional simulation, yielding a set of equally 

likely realizations of the property conditioned to available measurements. Therefore, 

each of these simulations reproduces the expected variability and, furthermore, they can 

be used to evaluate the uncertainty of predictions.  

 

 A second limitation arises from overparameterization and instability of the 

inverse problem (Cooley and Hill, 1995; Cooley, 2000). Instability implies unbounded 

fluctuations in the values of some model parameters. Instability has coerced the 

traditional use of the pilot points method. A possibility to fight unbounded fluctuations 

consists of imposing upper and lower bounds on model parameters (RamaRao et al, 

1995; Gomez-Hernandez et al, 1997). In general, this causes the solution to fluctuate 

between these arbitrary bounds, but its reliability is not improved. A tactic to 

circumvent overparameterization consists of reducing the number of model parameters. 

Though the use of a small number of pilot points may overcome instabilities, it leads to 

a loss of resolution in the identification of heterogeneity. 

 

 Another tactic to combat instabilities consists of adding a regularization term to 

the objective function (whose minimization leads to optimal model parameters). 

Regularization has been used by Doherty (2003), who penalized non homogeneity of 

the unknown field. Kowalsky et al (2004) included the concept of parameter plausibility 

for the first time in the context of pilot points. These authors penalized the departure of 

model parameters from their prior information. Unfortunately, the role of the 

plausibility term was not explored. This dissertation is a step in this direction. It is 

aimed at showing that the use of a plausibility term improves (1) the identification of 

heterogeneity and (2) the stability of the problem. The latter allows the modeller to use 

an increased number of pilot points (in fact, as many as computationally feasible), thus 

sharpening the resolution of heterogeneity. This document consists of four papers, 

which are self-contained and can be read independently, and concluding comments. 

 

 In the first paper, the methodology, termed ‘regularized pilot points method’ 

(RPPM), is presented and its performance is explored on a groundwater flow synthetic 
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example. Conditional estimation of logT is performed on the basis of drawdown data 

and prior information of parameters. Emphasis is placed on assessing the optimal 

weighting of the plausibility term, which quantifies the importance of prior information 

of parameters in the calibration. Specifically, the role of the plausibility term in the 

improvement of the identification of heterogeneity and the sensitivity of the 

methodology to the number of pilot points are explored.  

 

 The second paper presents a comparison between the variants of conditional 

estimation and conditional simulation implemented in the RPPM. That is, the possibility 

of using a plausibility term in the case of seeking stochastic simulations of the unknown 

field (logT) conditioned on direct measurements of the property and of dependent 

variables is explored.  

 

 In the third paper, the RPPM is framed in the context of the universal scaling 

theory (Neuman, 1990). The objective of this paper is to test the ability of the RPPM for 

reproducing the effect of small scale variability. Heterogeneity of logK is simulated by 

two nested variograms of short and long range, representing the small and large scales 

of variability, respectively.  We aim at evaluating whether the presence of high 

frequency fluctuations impedes the characterization of high connectivity patterns. In the 

negative case, whether including small scale variability allows reproducing tailing in 

breakthrough curves. 

 

Application of the RPPM to a real case is summarized in the fourth paper. The 

motivation of that work was the hydraulic characterization of a contaminated site as a 

first step to the design of a remediation system. This design demands an accurate 

characterization of hydraulic connectivity patterns, which are best measured by 

hydraulic diffusivity D (Knudby and Carrera, 2005). Tidal response data and prior 

information of model parameters should suffice for the characterization of D. However, 

calculations needed to design the remediation system demand the resolution of D into 

transmissivity and storage coefficient. To this end, response to two injection tests was 

added to the calibration data set. Two model structures are applied for the 

characterization of flow properties. They differ on whether or not the geological 

mapping is explicitly used for zonation. 
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1. Abstract 
 
The pilot points method is often used in non linear geostatistical calibration. The 

method consists of estimating the values of the hydraulic properties at a set of arbitrary 

(pilot) points so as to best fit the aquifer response as measured by available indirect 

observations (i.e., heads or drawdowns). Though this method remains general and 

appealing, no prior information of the hydraulic properties is usually included in the 

optimization process, which constrains the number of pilot points to ensure stability. In 

this paper, we present a modification of the pilot points method, including prior 

information in the optimization process by adding a plausibility term to the objective 

function to be minimized. This results from formulating the inverse problem in a 

maximum likelihood framework. The performance of the method is tested on a 

synthetic example. Results show that including the plausibility term improves the 

identification of heterogeneity. Furthermore, this term makes the inverse problem more 

stable and allows the use of larger number of pilot points, thus improving the 

identification of the heterogeneity as well. Therefore, the use of the plausibility term is 

recommended. 

 

2. Introduction 
 
 
Heterogeneity plays an important role for groundwater flow and contaminant transport 

in geological formations and needs to be accounted for in meaningful models. Inverse 

modeling represents a powerful tool to quantify the influence of heterogeneity (Carrera, 

1987; Carrera et al, 2005, de Marsily et al, 1999, McLaughlin and Townley, 1996; Yeh, 

1986). In order to identify heterogeneity, the groundwater inverse problem is usually 

formulated in a geostatistical framework. Early methods (Kitanidis and Vomvoris, 

1983; Rubin and Dagan, 1987; Gutjahr and Wilson, 1989) aimed at estimating at every 

point the departure from the mean log transmissivity implied by head data. These 

formulations are linear and their computational cost moderate. They often work fine 

(Zimmerman et al, 1998), but as complexity increases, iterating is needed (Carrera and 

Glorioso, 1991; Carrera et al, 1993; Zimmerman et al, 1998). However, geostatistical 

formulations estimate log transmissivity at every cell (or element), so that the non linear 

solutions become too expensive unless special numerical methods, such as the adjoint 

state method, are used (Medina and Carrera, 2003). This allows successful practical 
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application (Meier et al, 2001; Rötting et al, 2006) to complex problems, but it is 

difficult to program. Therefore, one needs to reduce the number of unknowns by means 

of some parameterization scheme. McLaughlin and Townley (1996) discuss a number 

of such schemes. However, the one that is most flexible and consistent with the 

geostatistical assumptions is the pilot points method. Hence, it is not surprising that it 

has gained steam in recent years. 

 

The pilot points method consists of (Figure 1): (1) generating an initial spatially 

correlated field given a geostatistical model, (2) defining an interpolation method to 

obtain the value of the hydraulic properties over the model domain on the basis of their 

measurements and their values at the pilot point locations (model parameters) and (3) 

optimizing the value of the model parameters in such a way that the interpolated field 

(step 2) minimizes an objective function measuring the misfit between calculated and 

measured data (often, only heads are considered). Thus, finding the optimum value of 

model parameters becomes an optimization problem. Notice that steps 2 and 3 imply the 

perturbation of the field generated in step 1. 

 

This method was originally devised by de Marsily (de Marsily et al, 1984), but 

has undergone several modifications. RamaRao et al (1995) and Gómez-Hernández et al 

(1997) included conditional simulations in the generation of the initial field. The 

location of the pilot points has been studied by Lavenue and Pickens (1992) and 

Hendricks-Franssen (2001), among others.  The pilot points method has become widely 

used and has been applied to different problems (Hernandez et al, 2003; Vesselinov et 

al, 2001). 

 

However, Cooley and Hill (2000) and Cooley (2000) identified some 

drawbacks. These arise from neglecting sources of model inaccuracy (i.e., errors in the 

conceptual model) and overparameterizing. The latter leads to instability of the 

optimization problem (Hadamard, 1902 and 1932). Instability implies (a) large values of 

some model parameters due to unbounded fluctuations (Bastin and Duque, 1981), which 

also causes (b) large “jumps” in the value of the hydraulic properties over small 

distances and (c) large second derivatives of the hydraulic property field. Tactics to 

combat instability are based on addressing these effects. 
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2) Compute perturbation fp(x)

x

f(x)

Drift based on measurements

Unknown reality

Measurement locations

1) Define drift fD(x)

x

f(x) 3) f(x)= fD(x) + fp(x)

 
 
Figure 1. Schematic description of the pilot points method for defining a spatial random function f(x), as 
the sum of a drift, fD(x), and a perturbation fp(x). The drift is defined by conditioning on available 
measurements. The perturbation is obtained from interpolation of the unknown pilot point values (model 
parameters), which are optimized so as to obtain a good fit with available indirect observations (i.e., 
heads). 
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A possibility to fight unbounded fluctuations consists of imposing upper and 

lower bounds on the model parameters. In the context of pilot points, RamaRao et al 

(1995) and Gómez-Hernández et al (1997) use this tactic. However, in general, this 

approach simply causes the solution to fluctuate between those arbitrary bounds, but its 

reliability is not improved (Neuman, 1973). 

 

Instability is attributed to overparameterization. Thus, the second tactic to 

circumvent instabilities consists of reducing the number of model parameters. In the 

context of pilot points, a common approach consists of starting with a single pilot point 

and adding new candidates at each iteration of the optimization process (RamaRao et al, 

1995). New pilot point locations are set according to their ability for reducing the 

objective function, measured by the sensitivity coefficients (Lavenue and Pickens, 

1992). Other researchers predefine the number of pilot points, whose location can be 

fixed (e.g. regular grids of 2-3 pilot points per correlation range in each direction; 

Capilla et al, 1997; Hendricks-Franssen, 2001) or vary randomly during the 

optimization process (Hendricks-Franssen, 2001). Though the use of a small number of 

pilot points may overcome instabilities, it leads to three side effects: first, the 

identification of the heterogeneity loses resolution; second, the role of a good 

geostatistical characterization becomes critical (Doherty, 2003) and third, the problem is 

very sensitive to the location of the pilot points (Lavenue and Pickens, 1992). 

 

A tactic to avoid large jumps in estimated parameters consists of penalizing 

them by adding regularization terms to the objective function: Tikhonov (1963a and b) 

imposes penalties to large values of the model parameters and unwarranted oscillations 

are penalized by Emsellem and de Marsily (1971). However, we argue that valuable 

information about model parameters is not included in the optimization process. This 

can be done by adding a plausibility term to the objective function, which helps in 

solving the above problems, while allowing a formal posing of the inversion (Carrera 

and Neuman, 1986a and b). The plausibility term is essentially a regularization criterion 

that penalizes the departure of the model parameters from their prior estimates (derived 

from the prior information of the hydraulic properties).  

 

In the context of pilot points, the inclusion of a regularization term has not been 

excluded from debate. Two trends can be found in the literature. On the one hand, 
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Certes and de Marsily (1991) reject the use of this term, questioning its performance, as 

it depends to a large extent on the reliability of prior estimates. RamaRao et al (1995) 

argue that plausibility is achieved inherently, given that the initial field to be perturbed 

already honors (1) the available measurements of the hydraulic property and (2) the 

variogram describing the spatial variability patterns as observed in the field. Similar 

arguments are used by other researchers for rejecting the plausibility term (Capilla et al, 

1997; Gomez-Hernandez et al, 1997; Lavenue et al, 1995; Lavenue and de Marsily, 

2001; Wen et al, 2002). Indeed, once the pilot point values have been estimated, the 

interpolation in step 2 of Figure 1 will be consistent with measurements. However, 

nothing assures that the estimation is plausible at the pilot points themselves. 

Addressing such inconsistency is one of the motivations of this work. 

 

On the other hand, regularization has been used by Doherty (2003), who 

penalizes non-homogeneity of the interpolated field rather than including the prior 

estimates of the model parameters. Kowalsky et al (2004) include a plausibility term for 

the first time in the context of pilot points. These authors seek for an identification of 

the permeability in an unsaturated flow synthetic example, conditioned to 

hydrogeological data (i.e., saturation profiles at boreholes and permeability 

measurements) and geophysical measurements (ground penetrating radar, GPR) in a 

maximum a posteriori (MAP) geostatistical context. Although they include the 

plausibility term in the objective function, its role is not explored and its weighting is 

unclear. In addition, they do not introduce correlation of model parameters in the 

estimation process (i.e., diagonal covariance matrix). In short, a methodology for proper 

accounting the plausibility of pilot point values is still lacking. 

 

The objective of this work is to present such a methodology and to show that the 

use of a plausibility term improves (1) the identification of heterogeneity and (2) the 

stability of the problem. The latter allows the modeler to use an increased number of 

pilot points, thus sharpening the resolution of heterogeneity. For these purposes, the 

method of pilot points was implemented in the code TRANSIN (Medina et al, 2000), 

that originally used the zonation approach within a maximum likelihood statistical 

framework.  
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This paper is organized as follows. First, the methodology is outlined. Second, 

the synthetic example and the results are explored. The paper ends with a discussion of 

the results and some conclusions about the use of the plausibility term. 

 

3. Methodology 
 
 
The proposed method is a modification of the pilot points method. Modifications 

include the use of a plausibility term and the way the vector of model parameters (value 

of the hydraulic properties at the pilot point locations) is updated through the 

optimization process. It can be summarized as follows (Figure 1): 

 

- Step 1: Analysis of measurements (hydrogeological, geophysical, etc.) and 

definition of the geostatistical model. In the example discussed here, the 

geostatistical model is defined by the variogram and the measurement error 

covariances, but more sophisticated models may be used. Some of the statistical 

parameters (e.g. variances of measurement errors) may remain uncertain.  

 

- Step 2: Parameterization. A hydraulic property f (e.g., log-transmissivity) is 

expressed as the superposition of two fields: a drift fD(x,t) and an uncertain 

residual fp (x), which is a linear combination of the model parameters pj: 
)(f)t,(f)t,(f pD xxx += (1)

 

- Step 2.1: Calculation of fD(x). The drift can be obtained through conditional 

estimation (kriging / cokriging) or conditional simulation, depending on 

whether the modeler is seeking the characterization of large scale patterns or 

small scale variability, respectively. Therefore, it honors hard data (e.g. 

measurements of the hydraulic property f*) and possibly soft data (i.e. 

geophysical data g* can be considered as external drifts). In the case of 

conditional simulation, fD(x) reproduces spatial variability patterns as 

observed in the field (e.g., it honors the variogram as well). For the case of 

linear estimation, it can be expressed as: 

∑
=

λ=
Zdim

1i
i

Z
iD )t,(Z)()t,(f xxx (2)
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where x is the location where fD is calculated, t and xi are the measurement 

times and locations, respectively, and are the (co-)kriging weights for the 

measurements, organized in the vector Z = (f

Z
iλ

 *, g *). Our implementation of 

the methodology allows a large set of conditional estimation methods: 

simple kriging, residual kriging, kriging with locally varying mean, kriging 

with external drift, simple cokriging, ordinary cokriging and ordinary 

cokriging standardized to the mean value of the primary variable. In addition 

to these methods for conditional estimation, a sequential simulation 

algorithm for conditional simulations was implemented.  

 

- Step 2.2: Parameterization of the uncertain residual fp(x). It can be viewed as 

the perturbation of fD(x) required to honor measurements of dependent 

variables (heads, concentrations, etc.). It is expressed as a linear combination 

of model parameters (value of the hydraulic property at the pilot point 

locations): 
Np

pp
p j j

j 1

f ( ) ( )p
=

= λ∑x x (3)

where Np is the number of pilot points used to parameterize fp (this number 

may be different for other hydraulic property) and are the (co-) kriging 

weights for the model parameters p

)(pp
j xλ

j. These weights are calculated in the 

same way as  for measurements. In fact, and Z
iλ

Z
iλ

pp
jλ need to be calculated 

jointly. In our implementation, the location of the pilot points can be fixed or 

vary randomly as the optimization process proceeds. 

 

- Step 3: Calculation of prior estimates of the pilot point values p* and 

corresponding a priori error covariance matrix Vp, by conditional estimation to 

measurements in vector Z. Notice that correlation is included during the 

estimation process. As a result, the variance of pilot points located close to 

measurement points will be small. Moreover, pilot point values should be close 

(i.e., highly correlated) when pilot point locations are close. Therefore, Vp is a 

full matrix, as opposed to diagonal. 
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- Step 4: Objective function. Following Medina and Carrera (2003), the optimum 

set of model parameters minimizes the objective function: 

( ) ( ) ( ) ( )*
jj

1t*
jj

ntypar

1j
j

*
ii

1t*
ii

nstat

1i
i ji

μβF ppVppuuVuu pu −−+−−= −

=

−

=
∑∑  (4)

where “nstat” denotes number of state variables ui with available measurements 

ui
* and covariance matrix  (i=1 for heads / drawdowns, i=2 for 

concentrations, i=3 for fluxes, etc.); “ntypar” is the number of types of model 

parameters being optimized, with prior information p

iuV

j
* and covariance matrix 

 (j=1 for pilot points linked to transmissivities, j=2 for storativities, etc.). β
jpV i 

and μj are weighting scalars correcting errors in the specification of  and 

. In this work, we used only drawdown data as state variable for identifying 

the heterogeneity of transmissivity (however, the methodology is general and 

can be applied to the estimation of different hydraulic properties). Thus, we will 

term hereinafter F

iuV

jpV

d the term of drawdowns (s hereinafter) and Fp the one of 

model parameters linked to transmissivities, being the simplified objective 

function (Medina and Carrera, 2003): 

( ) ( ) ( ) ( )*1t**1
s

t*
pd μFμFF ppVppssVss p −−+−−=+= −−  (5)

The objective function stated in equation 4 (or its particularization in equation 5) 

can be based on favoring the best match (Fd) and ensuring plausibility and 

stability (Fp). However, it can also be derived in a statistical framework. Gavalas 

et al (1976) derived it by maximizing the posterior pdf of the model parameters, 

MAP, while Carrera and Neuman (1986a) arrived to it by maximizing the 

likelihood of the parameters given the data (maximum likelihood estimation, 

MLE). Here, we use the formulation of Medina and Carrera (2003), who prefer 

working with the expected value of the likelihood function, as this allows the 

most stable estimation of statistical parameters, i.e., βi and μj.  

 

- Step 5: Minimization. The minimization of equation 4 is performed by means of 

Levenberg-Marquardt’s method. This method belongs to the Gauss-Newton 

family and it consists of linearizing the dependence of state variables on model 

parameters, while imposing that the parameter change Δpk at the k-th iteration is 
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constrained. This leads to a linear system of equations (Cooley, 1985; 

Marquardt, 1963; Nowak and Cirpka, 2004): 

( ) kkkk gΔpIH −=δ+

1+ = +p p Δpk k k

(6)

where Hk is an approximation of the Hessian matrix of F (equation 4) and gk its 

gradient at pk (vector of model parameters at iteration k), I is the identity matrix 

and δk is a positive scalar (Marquardt’s parameter). 

 

- Step 6: Updating the vector of model parameters. After each iteration, the vector 

of model parameters is updated as: 

(7)

Prior to updating, the components of vector Δpk are examined. If any of 

them is larger than a given threshold, all of them are reduced accordingly. Thus, 

an upper bound (per iteration) limits the maximum step size.  

 

Steps 5 and 6 are repeated until one the of the following conditions is met 

(Medina et al, 2003): (a) the maximum increment of parameters (per iteration) is 

very small, (b) the change in the objective function between two consecutive 

iterations is negligible, (c) the gradient norm is very small or (d) the ratio 

between the gradient norm and its value at the first iteration is small enough. 

The algorithm also stops if the number of iterations or failed iterations (those 

increasing the objective function) reach threshold values. In our experience, (d) 

is possibly the best check of convergence and, in this work, a reduction factor of 

10-6 of the norm of the gradient was adopted as indicator of convergence (this 

condition was achieved in most of the cases presented in the next section). 

 

To verify uniqueness, it is advisable to repeat the estimation starting from 

different initial values for model parameters. Starting from the drift (zero values 

to model parameters) is a good strategy. Starting from large values for pilot 

point perturbations usually leads to convergence. On the contrary, starting from 

too low values often leads to poor convergence. 

 

- Step 7: A posteriori statistical analysis. The optimization process is repeated 

using different values of the weighting scalars βi and μj, whose optimum values 
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are the ones leading to the maximum of the expected likelihood, equivalent to 

the minimum of the support function (Medina and Carrera, 2003):  

∑ μ
==

ntypar

1j
jj

nstat

2i
ii lnklnn

N
F

−∑ β−⎟
⎠
⎞

⎜
⎝
⎛++=2 lnNlnNS H  (8)

Here, N is the total number of data, n  and ki j are the number of state variable i 

and parameter type j data, respectively and H is the first order approximation of 

the Hessian matrix of the objective function at the end of the optimization 

process.  

 

4.  Application 
 
 
The objective of this example is to test, first, the role of the plausibility term in the 

improvement of the identification of heterogeneity, and second, its sensitivity to the 

number of pilot points. Results are explored on the basis of a synthetic example 

consisting of the simultaneous interpretation of three pumping tests in a square domain 

of 400x400 m2. In essence, the procedure follows the steps of Meier et al (2001). 

 

The flow domain is enlarged to avoid spurious boundary effects to a squared 

global domain of 3800x3800 m2 (Figure 2). Two different finite element discretizations 

apply, being more refined the central part (zone of interest). 

 

The “true” log transmissivity field (log10T hereinafter; Figure 2a) was generated 

with code TRANSIN (Medina et al, 2000) by sequential simulation conditional to a set 

of measurements defining two channels of high transmissivity. The “true” variogram is 

spherical, with a range of 200 m and a variance of 2, without nugget effect. Values of 

the “true” log10T field range from –9.1 to 0.5, with a mean value of –4 [log (m2 
10 / s)]. In 

this work, only heterogeneity of the log10T field was explored. Storativity was assumed 

to be constant and known over the whole domain, with a value of 10-4. 

 

Thirteen measurements of log10T were selected from the “true” field as 

easurements were purposefully located in such a way that the 

initial drift of equation 2 (calculated by ordinary kriging; Figure 2b) was radically 

different from the “true” field (Figure 2a). Notice that, indeed, the  high log

conditioning data. These m 

10T channels   
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Figure 2. Test problem description. a) Flow domain, “true” log10T field and location of conditioning 
measurements. All boundaries have a prescribed drawdown condition (zero). White square limits the zone 
of interest.  Pumping tests are performed independently at points B-1, B-2 and B-3. b) Kriging of the 
thirteen log10T measurements (circles denote observation wells, while crosses mark pumping wells). 

  

 

crossing the zone of interest are missed by the drift. Thus, the performance of the model 

is heavily dependent on the calibration of the perturbation field fp. We chose this setup 

to ensure that the plausibility term, which biases the estimation towards the drift, would 

hinder finding a good solution. 

 

Drawdown data comes from three independent pumping tests (but analyzed 

simultaneously) in the most productive wells of the central domain (pumping rates of 

10-2 m3/s at wells B1, B2 and B3 in Figure 2). Transient drawdowns were simulated at 

log10T 
[m2/s] 
log T 10
[m2/s] 
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grid nodes (Figure 3), assuming a zero drawdown as initial condition and prescribed at 

the boundaries. Drawdown measurements were calculated at the thirteen points where 

log10T measurements are available (a total of 936 drawdown data). A Gaussian white 

noise was added to those measurements, simulating acquisition errors, with a standard 

deviation of 0.3 m for pumping at wells B1 and B2 and 0.15 m at well B3 (1% of the 

maximum drawdown at each one of the tests).  

 

A total of 28 cases were solved, varying the weighting factor μ (equation 5) and 

the number of pilot points employed. To explore the role of the plausibility term, seven 

values of μ were tested, ranging from 10-3 to 102 (lower values were not considered due 

to convergence problems). This range of values was selected by taking into account that 

the optimum value of μ should be one if the variogram is error-free (log10T variogram 

used in the calibrations was the “true” one). High values of μ give too much weight to 

the plausibility term. This should result in a poor identification of heterogeneity, as the 

estimation would be biased towards the kriged field (Figure 2). On the contrary, small 

values of μ tend to disregard the plausibility term, thus risking instability.  

 

Regarding the number and location of pilot points, four regular networks were 

tested, containing 41, 65, 97 and 241 pilot points (Figure 5, column 1). Sixteen of them 

are located in the outer part of the domain (coarse discretization in Figure 2). The 

remaining ones (i.e. 25, 49, 81 and 225, respectively) fall within the zone of interest, 

corresponding to 2.5, 3.5, 4.5 and 7.5 pilot points per correlation range in each 

direction. Notice that only the coarsest network, containing 41 pilot points, 

acknowledges the “rule of thumb” of using 2-3 pilot points per correlation range 

(Capilla et al, 1997; Hendricks-Franssen, 2001). Observe that the number of log10T 

measurement locations does not constrain the number of pilot points (13 log10T 

measurement locations vs a minimum of 41 pilot points), due to the inclusion of the 

plausibility term. 

 

Additionally, we explored the sensitivity of the convergence rate to the threshold 

value limiting the maximum variation of model parameters after each iteration of the 

Levenberg-Marquardt’s method. Values of 0.1, 1 and 2 orders of magnitude of variation 

were tested.  
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Figure 3. “True” drawdowns after pumping (t = 7200 seconds) at wells B-1 (a), B-2 (b) and B-3 (c). The 
zone of interest (central square of 400 x 400 m2) has been enlarged two hundred meters each side.  

 

5. Results 
 
 
The performance of the method was evaluated both qualitatively (log10T maps and 

drawdown fits) and quantitatively. For the latter, an error vector e is defined as the 

difference between calculated and “true” values of log10T at the zone of interest (1600 

blocks of 10x10 m2). We analyzed the following statistics: 

 

1) Total objective function and its drawdowns and parameters components (F, Fd 

and Fp in equation 5, respectively). These are not good comparison criteria as 

they grow (Fd
 and F) or decrease (Fp) monotonically with μ.  
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2) Support function of the expected likelihood (equation 8), whose minimization 

should lead to the optimum value of μ. 

 

3) Mean absolute error: measures the match between calculated and “true” values 

of log10T. 

∑∑
==

−==
1600

1i

true
10

calc
10

1600

1i
iTlog TlogTlog

1600
1e

1600
1e 10  (9)

We used this criterion rather than the raw one measuring the estimation bias 

(identical but without absolute value), given that the latter, also evaluated, was 

close to zero in most cases, as expected. Therefore, it did not shed new light to 

this research. 

 

4) Root mean square error of log10T: this is the basic raw criterion to evaluate the 

goodness of the identification. Theoretically, it should be smaller than the a 

priori deviation (square root of the variogram sill, 2  in this case), if 

conditioning is good. The analogous magnitude for drawdowns, RMSEd, was 

also calculated. 

2
1

t
Tlog 1600

1RMSE
10

⎟
⎠
⎞

⎜
⎝
⎛= ee (10)

 

Table 1 summarizes the results concerning the identification of heterogeneity. 

Figures 4a and 4b display the quantitative comparisons in terms of the estimation errors, 

ēlog10T and RMSElog10T. Qualitative comparisons of log10T estimates are presented in 

Figure 5. Figure 6 displays the best matching of drawdown data (μ equals 10-3).  

 

The first observation that becomes apparent from Table 1 is the strong effect of 

the plausibility term. The relative importance given to this term is measured by the 

value of the weighting factor μ. Using small values of μ (small importance of the 

plausibility term, disregarding the prior estimates in the optimization process) 

consistently leads to the minimum value of Fd (best fit of drawdowns, Figure 6) and to 

the worst identification of log10T in all cases (Figure 5, column 1). That is, for any given 

number of pilot points, largest estimation errors, as measured by ēlog10T and RMSElog10T,  
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Table 1. Summary of results of the sensitivity analysis to the weighting factor μ and to the number of 

pilot points. Minimum values for each set are written in bold characters. 

 

Test problem Objective function (Equation 5) Estimation errors
Np, 

number 
of pilot 
points 

Total 
obj. func. 

(F) 

Drawdown Param. 
obj. func.

RMSE 
Weighting 

factor μ 
obj. func. S e log10T 2 log10T

(Fd) (Fp) (Eq. 8) (Eq. 10) (Eq.11) 
6 6--- --- --- 1.390 1.831 1.156⋅10 1.156⋅10μ → ∞ 

-3 1161 1158 10 3254 1399 3.534 5.146 
-210 1192 1166 2663 1358 3.416 4.988 
-110 1390 1196 1945 1455 2.913 4.241 
 –1 1708 1287 1402 1516 2.492 3.887 41 3⋅10

 010 3638 2377 1261 2345 2.629 3.878 
110 6571 3496 308 2885 1.853 2.632 
2 179 1.848 2.456 10 34050 16160 4462 
-3 756 754 10 1753 1109 1.704 2.705 
-210 768 758 1049 1027 1.343 1.983 
-110 826 778 480 1014 1.157 1.685 
 –1 905 805 453 1068 0.999 1.389 65 3⋅10

 010 1105 844 261 1237 0.992 1.363 
110 3953 1682 227 2450 1.302 1.842 
2 131 10 19141 6091 3995 1.505 2.062 
-3 741 737 10 3690 1214 2.016 2.938 
-210 759 744 1501 1075 1.431 2.080 
-110 787 753 348 1007 1.331 0.961 
 –13⋅10 875 784 302 1074 0.950 1.386 97 

10 0 1033 829 203 1205 1.025 1.456 
110 3070 1318 175 2267 1.408 2.001 
2 119 10 17426 5566 4018 1.525 2.081 
-3 726 723 10 2681 1321 1.749 2.503 
-210 736 727 851 1188 1.151 1.577 
-110 771 744 273 1116 0.771 1.034 
 –1 816 760 188 1131 0.852 1.142 241 3⋅10

 010 922 787 135 1227 0.809 1.090 
110 2835 1185 108 2479 1.194 1.758 
2 105 10 15358 4598 4423 1.525 2.138 

 

 

are obtained for values of μ=10-3. In this case, the lack of constraint in the plausibility 

term makes the problem somewhat unstable. Thus, estimated values at pilot point 

locations fluctuate wildly, leading to a “lumpy” appearance of the solution (Figure 5, 

column 1). Similar appearance of estimated fields can be found in Zimmerman et al 
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(1998) and Alcolea et al (2002). The use of variable locations of the pilot points helps 

alleviating this problem (Hendricks-Franssen, 2001).  

 

Similarly, large values of the weighting factor also yield poor results. The final 

solution tends to be too smooth (Figure 5, column 3), because it is biased towards the 

drift, which contains little information about the actual variability of the “true” field. In 

fact, the second largest values of the estimation errors (ēlog10T and RMSElog10T) were 

obtained with a value of 102 for μ in three (65, 97 and 241 pilot points) out of the four 

sets of pilot points.  

 
 Optimum identifications (Figure 5, column 2), as measured by criterion S2

(equation 8), are obtained when μ equals 10-1, except when the number of pilot points is 

small (41 pilot points), while Fd increases minimally (i.e. the fit of drawdowns does not 

deviate too much from its optimum, obtained when μ=10-3). We attribute this value 

(theoretically it should have been 1) to the procedure for designing the “true” field. This 

field is not typically multigaussian as assumed in this application. The fact that the 

method reacts by lowering μ (with respect to its theoretical optimum) suggests that the 

procedure is indeed robust with respect to the basic assumptions of the geostatistical 

model. 

 

A disturbing finding is that, if the plausibility term is not weighted properly, the 

identification of the heterogeneity is even worse than the drift, calculated by conditional 

estimation to values of hydraulic property only (i.e. not conditioning to drawdown data). 

However, the use of a maximum likelihood framework allows the estimation of the 

weighting factor μ (step 7 in the methodology). Therefore, the use of the plausibility 

term is advisable. 

 

Regarding the number of pilot points, estimation errors decrease substantially 

when using more than 41 pilot points. Mean error (Figure 4a) shows that, above this 

number, the improvement is small. However, the estimation variance (Figure 4b) is 

reduced considerably only when a large number of pilot points is used (97 and 241). In 

fact, the estimation variance is smaller than the a priori deviation only in these cases and 

near the optimum weight of the plausibility term. In addition, the identification of 
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heterogeneity gains precision (Figure 5, column 2) as the number of pilot points 

increases.  A similar conclusion can be obtained (regardless of the importance of the 

plausibility term) concerning drawdown data matching. Even though the fits using 41 

and 241 pilot points are very similar (Figure 6), the drawdown component of the 

objective function (Fd, Table 1) decreases as the number of pilot points increase. Thus, 

the larger is the number of pilot points, the better is the match to drawdown data and the 

identification of heterogeneity. On the other hand, CPU time required for the calibration 

increases proportionally to the number of pilot points (Figure 7). 
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Figure 4. Log-Transmissivity estimation errors versus μ, weighting factor of the plausibility term: (a) 
Mean error ēlog10T, (b) Root Mean Square Error RMSElog10T (dashed horizontal line displays theoretical 

threshold value of 2 )  
 

Concerning convergence rate (i.e. number of iterations in the different cases), 

each of the 28 basic cases in Table 1 was repeated three times, using different threshold 

values to limit the size of the updating vector (values 0.1, 1 and 2 were explored, 

allowing modifications of the model parameters of 0.1, 1 and 2 orders of magnitude, 

respectively, at each iteration of the optimization process). For any basic case, both 

qualitative and quantitative results of the three runs were almost identical, varying only 

the number of iterations of the optimization process (i.e. the smaller is the threshold 

variation prescribed, the larger is the number of iterations needed for yielding the same 

solution). The number of iterations needed with a threshold value of 0.1 is about twice 

the one needed for a value of 2 (number of iterations was similar using values of 1 and 

2). Therefore, setting too restrictive bounds in the variations of model parameters does 
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not make sense, because the computational effort increases while the solution remains 

unaltered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Qualitative comparison of results: Row 1. “True” log10T field and measurements, common 
scale bar and the drift to be perturbed (obtained by ordinary kriging of the log10T measurements). Rows 
2-5 display log-transmissivities obtained after conditioning to log10T and drawdown measurements with 
varying number (Np) of pilot points (circles in column 1) and weighting factor μ. Results look unstable 
when little weight (10-3) is assigned to prior information (consistently worst estimation errors; column 1). 
They look too smooth when too much weight (102) is assigned (column 3). They resemble the “true” field 
when both optimum weight and a large number of pilot points are used (optimum identification as 
measured by criterion S2 is displayed in column 2; in the insets, the corresponding values of μ). 
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Figure 6. Time evolution of measured (circles) and computed (lines) drawdowns in response to pumping 
in B-3 at selected observation points. Weighting scalar of the plausibility term is 10-3 (best fit of measured 
drawdowns). The number of pilot points and the root mean square error of drawdowns, RMSEd, are 
presented in the insets. Notice that the fits for 41 and 241 pilot points are very similar, despite the large 
differences between the corresponding log10T fields (Figure 5, column 1) and the calculated RMSEd. In 
fact, they are visually identical for all runs with drawdown objective function below 1000 (Fd in Table 1). 
The fit for 41 pilot points is not as good, but would also be considered acceptable. This implies that fitting 
drawdowns cannot be used as the sole criterion for the identification of transmissivities. 
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Figure 7. CPU time (in seconds) required for one iteration of the algorithm (steps 5 and 6). Results 
obtained in a Pentium IV platform.  

 

6. Conclusions 
 
 
A modification of the pilot points method has been presented, including a plausibility 

term in the optimization process. The suggested approach was tested on a synthetic 

example, exploring three items concerning the identification of heterogeneity: (1) the 

role of the plausibility term, (2) the sensitivity to the number of pilot points and (3) the 

effect of reducing the variation of the model parameters during the inversion process.  

 

Regarding the role of the plausibility term, we have found that neglecting it, 

which is the standard approach in the context of pilot points, leads to the best fit of 

drawdown data, but to an unstable identification of the model parameters. This 

instability is translated in large variations of the model parameters and manifested 

qualitatively in a “lumpy” appearance of the estimated field. On the contrary, to give too 

much importance to the plausibility term biases the solution towards the drift. If the 

geostatistical model contains little information of the actual variability patterns (as in 

this case), the estimated field yields also a poor identification of the heterogeneity.  

 

In fact, a disturbing finding is that, in most cases, conditioning to drawdown data 

worsens the results if the plausibility term is not weighted properly. However, the use of 

a statistical framework (maximum likelihood in this case) allows the estimation of the 

optimum weight of the plausibility term. In the synthetic example, values ranging from 
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0.1 to 1 (the latter was the theoretical optimum) offered the best identifications of the 

heterogeneity, as measured by the estimation errors, while drawdown fits were close to 

the optimum ones, obtained when μ is minimum. It should be noticed that good fits to 

measured drawdowns were obtained when neglecting (assigning very low weights to) 

prior information. Still, nearly as good fits were obtained with stable estimations when 

moderate weights were assigned to prior information. 

 

Concerning the number of pilot points, the comparison of the estimation errors 

has shown that the use of a refined network with a large number of pilot points offers a 

precise identification of the heterogeneity and a good fit of drawdown data, while 

reducing the importance of a good geostatistical characterization. In short, the use of the 

plausibility term permits the use of a large number of pilot points, thus overcoming the 

risk of instabilities. In fact, one should use as large a number of pilot points as 

computationally feasible. 

 

It should be stressed that the nature of the example did not favor the use of a 

plausibility term. First, a large number of drawdown data, coming from three different 

tests, was available. Therefore, one would tend to think that the problem is well posed 

and that little is gained by adding plausibility. Second, prior information was not very 

good. Only thirteen measurement points were available and they missed the channels of 

the true field (recall Figure 2). Therefore, one might fear that the plausibility term would 

bias the estimation to a wrong solution, as indeed occurred when too much weight was 

given to this term. The fact that the solution was still good suggests that the approach is 

robust. We attribute the relatively low weight assigned to prior information to the fact 

that reality was not really multigaussian, as assumed. 

 

The inclusion of a reduction factor in the variation of the model parameters does 

not offer any improvement to the identification of the heterogeneity. Results using three 

values of this reduction factor yield virtually identical results in all runs. Thus, the 

reduction in the variation of the model parameters only adds computational effort, while 

the solution remains unchanged.  

 

Finally, we stress that the prior information is a valuable data for quantifying 

heterogeneity, even when it is poorly informative. Thus, the use of a plausibility term 
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including this information (usually disregarded in the context of pilot points) needs to 

be considered. 
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1. Abstract 
 

The inverse problem (also referred to as parameter estimation) consists of evaluating the 

medium properties ruling the behavior of a given equation from direct measurements of 

those properties and of the dependent state variables. The problem becomes ill-posed 

when the properties vary spatially in an unknown manner, which is often the case when 

modeling natural processes. A possibility to fight this problem consists of performing 

stochastic conditional simulations. That is, instead of seeking a single solution 

(conditional estimation), one obtains an ensemble of fields, all of which honor the small 

scale variability (high frequency fluctuations) and direct measurements. The high 

frequency component of the field is different from one simulation to another, but a fixed 

component for all of them. Measurements of the dependent state variables are honored 

by framing simulation as an inverse problem, where both model fit and parameter 

plausibility are maximized with respect to the coefficients of the basis functions (pilot 

point values). These coefficients (model parameters) are used for parameterizing the 

large scale variability patterns. The pilot points method, which is often used in 

hydrogeology, uses the kriging weights as basis functions. The performance of the 

method (both its variants of conditional estimation / simulation) is tested on a synthetic 

example using a parabolic-type equation. Results show that including the plausibility 

term improves the identification of the spatial variability of the unknown field function 

and that the weight assigned to the plausibility term does lead to optimal results both for 

conditional estimation and for stochastic simulations. 

 

2. Introduction 
 

 

Parabolic equations represent natural diffusive phenomena and are used in many 

branches of engineering. Examples are the equations of heat conduction (industrial), 

groundwater flow (hydrogeology), or molecular diffusion (chemistry and contaminant 

transport), among others. Spatial variability of the properties (e.g. hydraulic 

conductivity for groundwater flow) entering those equations can be high but unknown, 

especially when they represent natural media. Moreover, it rules the performance of 

those equations (Freeze, 1975). Therefore, it has to be accounted for in meaningful 
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models. Identification of the spatial variability is carried out in the context of inverse 

modeling (Carrera et al, 2005; Carrera, 1987; Ouyang, 1992; Schnur and Zabaras, 1992; 

de Marsily et al, 1999; McLaughlin and Townley, 1996; Yeh, 1986) (also referred to as 

parameter estimation), which consists of estimating the properties as field functions 

from direct measurements of the properties (e.g. point values of thermal or hydraulic 

conductivity) and of dependent state variables (e.g. temperature and head for the heat 

transfer and groundwater flow equations, respectively).  

 

The natural formulation of the inverse problem consists of assuming the state 

variable to be known and assume the field functions defining medium properties to be 

unknown. Such formulation is often ill-posed (i.e., a solution may not exist, it may not 

be unique, and it is usually unstable) for parabolic equations (Carrera and Neuman, 

1986a, b and c). Moreover, it is not useful for practical purposes because the state 

variable is never known throughout the model domain. Therefore, one needs to 

parameterize the solution (i.e., to write the field functions in terms of a, hopefully small, 

number of parameters). Most parameterization techniques may be viewed as functional 

spaces where the parameters are the interpolation coefficients and the set of 

interpolation functions is a basis. A number of parameterization techniques have been 

used. Among them, the method of pilot points (de Marsily et al, 1984) has gained steam 

during recent years in hydrogeology because it is flexible and because it is formulated in 

a geostatistical context, so that it allows natural extensions to stochastic solutions of the 

governing equations. These are required when variability is important and unknown 

(Freeze, 1975; Narayanan, 1992).  

 

The pilot points method consists of : (1) generating an initial spatially correlated 

field given a geostatistical model (i.e. measurements, if any, and correlation structure of 

the field function), (2) defining an interpolation method to obtain the value of the field 

functions over the model domain on the basis of their values at measurement and pilot 

point locations (model parameters) and (3) obtaining the value of the model parameters 

in such a way that the interpolated field (step 2) minimizes an objective function 

measuring the misfit between calculated and measured data (often, only state variables 

are considered). Thus, finding the optimum value of model parameters becomes an 

optimization problem. Notice that step 3 implies the perturbing the field generated in 

step 1. 
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As described above, the method suffers severe limitations. On the one hand, it is 

unstable, so that estimated pilot point values often reach non-plausible values. The 

inclusion of a regularization term to overcome this problem has been the subject of  

debate. Certes and de Marsily (1991) reject the use of such a term, questioning its 

performance, because it depends to a large extent on the reliability of the prior 

estimates. RamaRao et al (1995) argue that the plausibility is achieved inherently, given 

that the initial field to be perturbed already honours (1) the available measurements of 

the field function and (2) the covariance structure describing the spatial variability 

patterns as observed in the field. Similar arguments are used by other researchers for 

rejecting the plausibility term (Capilla et al, 1997; Gomez-Hernandez et al, 1997; 

Lavenue et al, 1995; Lavenue and de Marsily, 2001; Wen et al, 2002). Regularization 

has been used by Doherty (2003). Yet, his objective was to penalize non-homogeneity 

of the interpolated field rather than to include prior information about model 

parameters. Kowalsky et al (2004) used geophysical measurements (Ground Penetrating 

Radar) in a maximum a posteriori geostatistical context. Recently, Alcolea et al (2006) 

proposed adding a plausibility term to the objective function, so as to penalize 

departures of pilot point values from their prior estimates obtained by kriging. They 

showed that the use of such a regularization term improves (1) the identification of 

spatial variability and (2) the stability of the problem, allowing the use of larger number 

of pilot points, thus sharpening the resolution of the spatial variability.  However, they 

also found that including the plausibility term may lead to worse results than simply 

interpolating from measurements (i.e. not inverting at all) if the plausibility term is not 

properly weighted. Fortunately, the use of a maximum likelihood statistical framework 

allows the identification of the optimum weight of the plausibility term. 

 

A second limitation of the pilot points method is related to the definition of the 

initial spatially correlated field: the original method of de Marsily obtained this field 

through conditional estimation (variants of kriging, Gu, 2003; Krige, 1951). This yields 

a single “best” solution that minimizes the field variance and honors the available 

measurements of the field function. However, the resulting field is oversmoothed and 

does not allow a realistic representation of spatial variability. To overcome this 

problem, some authors (RamaRao et al, 1995; Capilla et al, 1997; Gomez-Hernandez et 

al, 1997; Hendricks-Franssen, 2001) included conditional simulations in the generation 
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of the initial field, yielding a set of equally probable realizations of the field functions 

conditioned to available measurements. That is, each of these simulations reproduces 

the expected variability and honors measurements. Therefore, they can be used to 

evaluate the uncertainty of predictions. Unfortunately, these methods do not allow the 

inclusion of a plausibility term, so that they are essentially unstable. 

 

The objective of this paper is to overcome the above limitations. Specifically, we 

seek a formulation of the inverse problem capable of generating equally probable 

simulations of the field functions (e.g. transmissivity field) that are conditioned to 

measurements of the medium properties and the state variables (e.g. heads). To this end, 

we extend the method of Alcolea et al (2006) to the case of conditional simulation. That 

is, we explore the possibility of using a regularization term in the case of seeking 

stochastic simulations of the properties conditioned upon point measurements of both 

those properties and dependent state variables.  

 

This paper is organized as follows. First, the methodology is outlined. Second, a 

synthetic example using the parabolic groundwater flow equation is presented. The 

paper ends with a discussion of the results and some conclusions about the use of the 

plausibility term in the context of the pilot points method. 

 

3. Methodology 
 

 

The proposed method is a modification of the pilot points method. Modifications 

include the use of a plausibility term and the way the vector of model parameters (value 

of the field functions at the pilot point locations) is updated through the optimization 

process. We assume that the (geostatistical) characteristics of the field functions are 

known. Here, the geostatistical model is defined by an autocorrelation function, but 

more sophisticated models may be used to represent complex heterogeneity patterns, 

geophysical data or known features. The procedure can be summarized as follows: 
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- Step 1. Parameterization. A field function f is expressed as the superposition of 

two fields: a known drift fD(x,t) and an uncertain residual fp(x), which is a linear 

combination of the model parameters pj (Figure 1): 

 
)(f)t,(f)t,(f pD xxx += (1)

 

- Step 1.1. Calculation of fD(x,t). The drift can be obtained through conditional 

estimation (kriging / cokriging) or conditional simulation, depending on 

whether the modeler is seeking the characterization of large scale patterns or 

small scale variability, respectively. Therefore, it honors hard data (i.e. direct 

measurements of the field function f*) and possibly soft data g* (correlated 

with f), that can be included as external drifts. In the case of conditional 

simulation, fD(x,t) reproduces the spatial variability patterns as observed in 

the field (honors the correlation structure as well), if the geostatistical model 

defined previously is informative enough. For the simple case of linear 

interpolation, it can be expressed as: 

∑
=

λ=
Zdim

1i
i

Z
iD )t,(Z)()t,(f xxx (2)

where x is the location where fD is calculated, t and xi are the measurement 

times and locations, respectively and are the (co-)kriging weights for the 

measurements (Krige, 1951), organized in the vector Z = (f

Z
iλ

 *, g *). Our 

implementation of the methodology allows a large set of conditional 

estimation / simulation methods: simple kriging, residual kriging, kriging 

with locally varying mean, kriging with external drift, simple cokriging, 

ordinary cokriging, ordinary cokriging (standardized to the mean value of 

the primary variable f), among the methods for conditional estimation (Gu, 

2003), plus a sequential simulation algorithm for conditional simulations 

(Liu and Journel, 2004).  

 

- Step 1.2. Parameterization of the uncertain residual fp(x). It can be viewed as 

the perturbation that the drift requires to honor measurements of dependent 

state variables. It is expressed as a linear combination of the model 

parameters (value of the field function at the pilot point locations): 
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pN
pp

p j j
j 1

f ( ) λ ( )p
=

= ∑x x (3)

where Np is the number of pilot points used to parameterize fp(x) (this 

number does not need to be the same for all field functions representing 

properties) and are the (co-) kriging weights for the model parameters 

p

)(pp
j xλ

j, calculated in the same way as  for measurements. In our 

implementation, the location of the pilot points can be fixed or vary 

randomly as the optimization process proceeds. 

Z
iλ

 

- Step 2. Prior estimation. Prior estimates of the pilot point values p* and the 

corresponding a priori error covariance matrix Vp are obtained by conditional 

estimation / simulation to measurements in vector Z. Notice that correlation is 

included during the estimation process. In fact, pilot point values should be close 

(i.e. highly correlated) when pilot point locations are close. Therefore Vp
 is a full 

matrix. 

 

- Step 3. Objective function. Using Maximum Likelihood Estimation (Medina 

and Carrera, 2003), the optimum set of model parameters minimize the objective 

function: 

( ) ( ) ( ) ( )*
jj

1t*
jj

ntypar

1j
j

*
ii

1t*
ii

nstat

1i
i ji

F ppVppuuVuu pu −−μ+−−β= −

=

−

=
∑∑  (4)

where “nstat” denotes number of state variables ui with available measurements 

ui
* (i.e., in groundwater, i=1 for heads / drawdowns,  i=2 for concentrations, 

etc.); “ntypar” is the number of types of model parameters being optimized, with 

prior information pj
* (i.e., j=1 for pilot points linked to transmissivities, j=2 for 

storativities, etc.). Matrices  and  represent our best guess of the error 

covariance matrices of state variables and models parameters, respectively, and 

β

iuV
jpV

i, μj are weighting scalars correcting errors in the specification of  and . 

In our synthetic example, we solve the groundwater flow equation using only 

drawdown data as state variable for identifying the spatial variability of the 

transmissivity field. Thus, we will term hereinafter F

iuV
jpV

d the term of state variables 
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and Fp the term of model parameters. Assuming that error covariance matrix of 

drawdown is correct (β1=1), the simplified objective function can be written as: 

( ) ( ) ( ) ( )*1t**1
s

t*
pd μμFFF ppVppssVss p −−+−−=+= −− (5)

While the objective function stated in equation 4 (or its particularization in 5) 

was originally based on favoring the best match of state variables (Fd), while 

ensuring stability and plausibility of the model parameters (Fp), it can also be 

derived in a statistical framework. Gavalas et al (1976) derived it by maximizing 

the posterior pdf  (probability density function) of the model parameters, MAP, 

while Carrera and Neuman (1986a) arrived to it by maximizing the likelihood of 

the parameters given the data, MLE. Instead, Medina and Carrera (2003) prefer 

working with the expected value of the likelihood function, as it allows the most 

stable estimation of statistical parameters, i.e., βi and μj. Here, we use the same 

formulation. 

 

- Step 4. Minimization. The minimization of equation 4 is performed by means 

of Levenberg-Marquardt’s method. This method belongs to the Gauss-Newton 

family and it consists of linearizing the dependence of state variables on model 

parameters, while imposing that the parameter change Δpk at the k-th iteration is 

constrained. This leads to a linear system of equations (Marquardt, 1963; 

Cooley, 1985; Bereaux and Clermont, 1995): 

( ) kkkk gΔpIH −=δ+ (6)

where Hk is an approximation of the Hessian matrix of F (equation 4) and gk its 

gradient at pk (vector of model parameters at iteration k), I is the identity matrix 

and δk is a positive scalar (the so-called Marquardt’s parameter). 

When the objective function takes a form similar to equation 5, second order 

derivatives of the state variable with respect to the parameters are often 

neglected, and the approximation of the Hessian matrix can be written as: 

Hk=2 Jt
s Vs

-1 Js
 + 2 μ Vp

-1 (7)
 

where Js is the jacobian matrix (i.e. derivatives of drawdowns with respect to 

model parameters at iteration k). The latter can be calculated by direct derivation 

of the PDE or by the adjoint state method (Galarza et al, 1999). The gradient of 

the objective function can be written as: 
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gk=2 Jt
s Vs

-1 (s-s*) + 2 μ Vp
-1(p-p*) (8)

 

- Step 5. Updating the vector of model parameters. After each iteration, the 

vector of model parameters is updated as: 
kk1k Δppp +=+

(9)

Prior to updating, the components of vector Δpk are examined. If any of them is 

larger than a given threshold, all of them are reduced accordingly. Thus, an 

upper bound (per iteration) limits the maximum step size.  

Steps 4 and 5 are repeated until convergence, which is checked using the criteria 

of Medina et al (2000): (a) the maximum increment of parameters (per iteration) 

is very small, (b) the change in the objective function between two consecutive 

iterations is negligible, (c) the gradient norm is very small or (d) the ratio 

between the gradient norm and its value at the first iteration is small enough. 

The algorithm also stops if the numbers of iterations or failed iterations (those 

increasing the objective function) reach threshold values. In our experience, (d) 

is possibly the best check of convergence and, in this work, a reduction factor of 

106 of the norm of the gradient was adopted as indicator of convergence.  

To verify uniqueness, it is advisable to repeat the estimation starting from 

different initial values for model parameters. Starting from the drift (zero values 

to model parameters) is a good strategy. Starting from large values for pilot 

point perturbations usually leads to a good convergence. On the contrary, 

starting from values that are too low often leads to poor convergence. 

 

- Step 6. A posteriori statistical analysis. The optimization process is repeated 

using different values of the weighting scalars βi and μj, whose optimum values 

are the ones leading to the maximum of the expected likelihood, equivalent to 

the minimum of the support function (Medina and Carrera, 2003):  

2 ln H ln FS N N
N 1

ln
ntypar

j j
j

k μ
=

⎛ ⎞ − ∑⎜ ⎟
⎝ ⎠

= + +  (10)

Here, N is the total number of data, ni and kj are the number of measurements of 

state variable ‘i’ and the number of prior information data of the j-th parameter 

type, respectively and H is the approximation of the Hessian matrix at the end of 

the optimization process.  

 PII-8



x

f(x)
1. Define drift, fD(x)

Drift based on measurements

Unknown reality

Measurement locations

 

x

fp(x)
2. Compute perturbation, fp(x)

0

Pilot point locations

Perturbation at pilot point location

Interpolation of pilot point values

 

x

f(x)
3. f(x) = fD(x) + fp(x)

f(x)

 
 
Figure 1. Schematic description of the pilot points method for defining a spatial random function f(x), as 
the sum of a drift fD(x) and a perturbation fp(x). The drift is defined by conditional estimation (the smooth 
drift in the figure) or simulation (a sharper drift; not depicted) on available measurements. The 
perturbation is obtained from interpolation of the unknown pilot point values (model parameters), which 
are optimized so as to obtain a good fit with available indirect observations (e.g. measurements of the 
state variable). 

 PII-9



Notice that the methodology for variants of conditional estimation and 

conditional simulation only differs in the generation of the initial drift (step 1.1). This 

drift is unique in the case of conditional estimation and there are many realizations for 

conditional simulation. In the latter case, steps 2 to 6 must be repeated for each 

realization of the initial drift.  

 

4. Application 
 

 

The objective of this example is to extend the results of the previous work of Alcolea et 

al (2006) to the case of conditional simulation, exploring the possibility of using a 

plausibility term.  

 

Results are explored on the basis of a synthetic example, consisting of the 

simultaneous interpretation of three pumping tests ruled by the parabolic groundwater 

flow equation: 

( ) hh S on
t

∂
∇ ∇ = Ω

∂
T

0h ( ) on
α(H h) Q on

Ω
− + Γ
x

 (11)

 

where Ω is the flow domain, T is the transmissivity tensor, S is storativity and h is head 

(the state variable). Initial and boundary conditions can be written as: 

h(t 0)
h
= =

∇ =T n
 (12)

 

where Γ denotes the boundary of the flow domain, n is a unit vector normal to Γ and 

pointing outwards, H and Q are prescribed heads and flows, respectively and α is a 

coefficient controlling the type of boundary condition (α=0 for prescribed flow, α→∞ 

for prescribed head and a mixed condition otherwise). When pumping tests are 

interpreted, it is useful to work with drawdowns (difference between head in presence of 

pumping and head in absence of pumping), denoted as ‘s’ hereinafter. This leads to 

homogeneous (zero) initial and boundary heads, as well as boundary flow rates. 

Equation (11) is solved applying the Galerkin method in space and forward finite 

differences in time. Elements are quadrangular bilinear. 
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The flow domain is a square of 400x400 m2, despite it is enlarged to avoid 

spurious boundary effects to a global domain of 3600x3600 m2 (Figure 2a). The finite 

element grid is more refined the central part (zone of interest, Figure 2). There, the finite 

element mesh is structured. Outside, the element size increases as the mesh progresses 

towards the boundary domain (Figure 2a). 

 

The “true” log transmissivity field (log10T hereinafter) was generated with the 

code TRANSIN (Medina et al, 2000) by sequential simulation (Figure 2a) conditional to 

a set of measurements defining two channels of high transmissivity. The “true” 

variogram (field variance minus autocorrelation function) is spherical, with a range of 

200 m and a variance of 2, without nugget effect. Values of the “true” log10T field range 

from –9.1 to 0.5, with a mean value of –4 [log10 (m2/s)]. In this work, only the 

heterogeneity of the log10T field was explored. Storativity was assumed to be constant 

and known over the whole domain, with a value of 10-4. 

 

Thirteen measurements of log10T were selected from the “true” field as 

conditioning data. Measurement locations were purposefully selected in such a way that 

the initial drift of equation 2 (calculated by ordinary kriging or by sequential simulation, 

for the cases of conditional estimation / simulation, respectively) was radically different 

from the “true” field (Figure 2b). Notice that, indeed, the high log10T channels crossing 

the zone of interest are missed by the drift. Thus, the performance of the model is 

heavily dependent on the calibration of the perturbation field fp. This setup was chosen 

to ensure that the plausibility term, which biases the solution towards the drift, would 

hinder finding a good solution.  

 

Drawdown data comes from three independent pumping tests (but analyzed 

simultaneously) in the most productive wells of the central domain (pumping rates of 

10-2 m3/s at wells B1, B2 and B3 in Figure 2). Transient drawdowns were simulated at 

grid nodes (Figure 3), assuming a zero drawdown as initial condition and prescribed at 

the boundaries of the global domain. Drawdown measurements were calculated at the 

thirteen points where log10T measurements are available (total of 936 drawdown data). 

A Gaussian white noise was added to those measurements, simulating acquisition 

errors, with a standard deviation of 0.3 m for pumping at wells B1 and B2 and 0.15 m at 

well B3 (1% of the maximum drawdown at each one of the tests).  
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(c)  Initial kriging                             CS2                                     CS8 
 
Figure 2. Test problem description. a) Finite element mesh and flow domain, b) true log10T field and 
location of conditioning measurements. All boundaries have a prescribed drawdown condition (zero). 
White square limits the zone of interest, where three pumping tests are performed independently at points 
B-1, B-2 and B-3. Below, initial drifts, obtained by kriging of the thirteen log10T measurements (c) and by 
conditional simulation (cases listed at Table 1). Notice that they are radically different from the “true” 
field depicted above. 
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In the previous work of Alcolea et al (2006), the optimum weight of the 

plausibility term was found for the case of conditional estimation. For the purpose of 

this paper, we take as starting point the conditional estimations using 97 pilot points 

located in a regular grid (Figure 5; row 1, column 3) and explore the optimum weight of 

the plausibility term when the initial correlated fields are drawn by conditional 

simulations (a total of 10 realizations). We use values of the weighting factor ranging 

from 10-1 to 102. This range of values was selected by taking into account that the 

optimum value of μ should be one if the variogram is error-free (log10T variogram used 

in the calibrations was the “true” one). High values of μ give too much weight to the 

plausibility term. This should result in a poor identification of the spatial variability, as 

the field would be biased to the initial drift (Figure 2b). On the contrary, small values of 

μ tend to disregard the plausibility term, thus risking instability.  
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Figure 3. “True” drawdown (m) after pumping (t=7200 seconds) at wells B-1 (a), B-2 (b) and B-3 (c). 
The zone of interest (central square of 400 x 400 m2) has been enlarged two hundred meters each side. 
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5. Results 
 
 

Results are explored in the same way as in the previous work [23]: qualitatively (log10T 

maps and drawdown fits) and quantitatively. For the latter, an error vector e is defined 

as the difference between calculated and “true” values of log10T at the central part of the 

domain (1600 blocks of 10x10 m2). We analyze the following statistics: 

1) Total objective function and its drawdowns and parameters components (F, 

Fd and Fp in Equation 5, respectively). These are not good comparison 

criteria as they grow (F and Fd) or decrease monotonically (Fp) with μ.  

 

2) Support function of the expected likelihood (Equation 10), whose 

minimization should lead to the optimum value of μ. 

 

3) Mean error: measures the match between calculated and “true” values of 

log10T. 

∑∑
==

−==
1600

1i

true
10

calc
10

1600

1i
iTlog TlogTlog

1600
1e

1600
1e 10  (13)

We used this criterion rather than the raw one measuring the estimation bias 

(identical but without absolute value), given that the latter, also evaluated, 

was close to zero in most cases, as expected. Therefore, it did not shed new 

light on this research. 

 

4) Root mean square error of log10T: this is the basic raw criterion to evaluate 

the goodness of the identification. Theoretically, it should be smaller than 

the a priori deviation (square root of the variogram sill, 2  in this case), if 

conditioning is good.  

2
1

t
Tlog 1600

1RMSE
10

⎟
⎠
⎞

⎜
⎝
⎛= ee (14)

  

As will be discussed later, mean error and root mean square error are very 

sensitive to the location and extreme values of the zones of high / low transmissivity. 

 

 PII-14



Table 1 displays a comparison between the evolution of the statistics with the 

weight of the plausibility term for the conditional estimation and two out of ten 

conditional simulations. Table 2 summarizes the quantitative comparisons and contains 

the value of μ for which the estimation statistics reach their optimum value. For 

instance, the minimum value of is attained at μ=0.1 in simulation 5. Figure 4 

displays the quantitative comparison in terms of the support function of the expected 

likelihood S

Tlog10
RMSE

2
 and the estimation errors, and . Identifications of logTlog10

e Tlog10
RMSE 10T 

are presented in Figure 5. Figure 6 displays the best matching of drawdown. 

 

The first observation that becomes apparent from Table 1 is the strong effect of 

the dependence of the plausibility term, as occurred in the previous work. The relative 

importance given to this term is measured by the value of the weighting factor μ. Using 

small values for this factor (little importance of the plausibility term, disregarding prior 

estimates in the optimization process and therefore, prior information) consistently leads 

to the best fit of drawdowns (minimum value of Fd) and to the worst fit of model 

parameters (maximum value of Fp), as expected. Identifications of the spatial variability 

(Figure 5; last row, column 2) using a weighting factor of 10-1 offer a somewhat 

“lumpy” appearance, with large jumps in the calibrated transmissivity over small 

distances. In fact, when the drift is generated by conditional estimation, Alcolea et al 

(2006) found the optimum identification when µ equals 0.1 (the minimum value tested 

in this example), that yields the worst qualitative identification of the log10T field in this 

work. In fact, values of μ lower than 10-1 were excluded from this study due to 

instability problems. 

 

Similarly, large values of the weighting factor also yield poor results. The final 

solution tends to be close to the initial drift (Figure 5, first row), which contains little 

information about the actual variability of the “true” field. However, estimation errors 

are sometimes smaller when μ equals 102 than the ones in the case of 101 (see CS2 in 

Table 1 and Figures 4b,c). We attribute this effect to the sensitivity of the estimation 

errors to the geometrical definition and extreme values of the high transmissivity 

channels (i.e. a small error in the position or the inclination of the channels may lead to 

large values of the estimation). As displayed in Figure 5 (column 2), the identification 

of the log10T field in row 2 (μ=102) is worse than the one in row 3 (μ=101), although its  
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Table 1. Summary of results of the sensitivity analysis to the weighting factor μ, for the conditional 

estimation CE (from Alcolea et al, 2006) and two out of ten conditional simulations CS. Minimum values 

for each set are written in bold characters. 

 

Test problem Objective function (Equation 5) Estimation errors
 

Weighting 
factor μ 

Total 
obj. func. 

(F) 

Drawdown 
obj. func. 

(Fd) 

Parameters  
obj. func. 

(Fp) 
S2

(Eq. 8) 

Tlog10e 10 
(Eq. 11) 

TlogRMSE  
(Eq.12) 

μ → ∞ 1.156⋅106 1.156⋅106 --- --- 1.390 1.831 
102 17426 5566 119 4018 1.525 2.081 
10 1 3070 1318 175 2267 1.408 2.001 
100 1033 829 203 1205 1.025 1.456 

3⋅10-1 875 784 302 1074 0.950 1.386 
10-1 787 753 348 1007 0.961 1.331 
10-2 759 744 1501 1075 1.431 2.080 

CE 

10-3 741 737 3690 1214 2.016 2.938 
μ → ∞ 7.677⋅105 7.677⋅105 --- --- 1.71 2.20 

102 8467 2856 56 3193 1.37 1.82 
10 1 1621 917 70 1536 1.73 2.29 
100 901 784 117 998 1.03 1.42 

CS 2 

10-1 773 747 253 958 1.38 1.89 
μ → ∞ 1.233⋅106 1.233⋅106 --- --- 1.64 2.12 

102 9294 2670 66 3286 1.36 1.89 
10 1 2117 1095 102 1804 1.40 1.94 
100 912 783 129 1013 1.15 1.57 

CS 8 
 

10-1 774 750 244 933 1.22 1.67 
 
 
estimation errors are smaller. This effect is not reproduced for the case of conditional 

estimation. 

 

Optimum identifications, as measured by criteria S2, are obtained when μ equals 

10-1 in the ten conditional simulations, the same result attained by Alcolea et al (2006) 

for conditional estimation. This is important because it suggests that the modeler does 

not need to identify the optimum weight for each conditional simulation (usually a large 

number), but to obtain it just once using the method in its variant of conditional 

estimation. 
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Table 2. Values of the weighting factor μ for which the estimation errors are minima (CE and CS denote 

conditional estimation and conditional simulation, respectively). The tested values of μ were 10-1, 100, 101 

and 102. The optimum identification of the spatial variability, as measured by the support function of the 

expected likelihood S2 (Equation 10) is always attained when μ equals 0.1. 

 

Test problem Tlog10e  (Equation 13) Tlog10
RMSE  (Equation 14) 

CE 10-1 10-1

CS 1 100 100

CS 2 100 100

CS 3 10-1 10-1

CS 4 100 100

CS 5 10-1 10-1

CS 6 102 102

CS 7 10-1 10-1

CS 8 100 100

CS 9 100 100

CS 10 102 102

 

 

Another result shared by conditional estimation and simulation is that, if the 

plausibility term is not properly weighted, the identification of the spatial variability is 

worse than the initial drift, as measured by estimation errors (Table 1). However, the 

use of the methodology in a maximum likelihood framework allows the estimation of 

the weighting factor µ. Therefore, the use of a plausibility term is advisable, 

independently of how the drift was calculated. 

 

Figure 6 displays the best drawdown fit (µ equals 0.1) for the conditional 

simulations at Table 1 and the conditional estimation. Calculated drawdowns are very 

similar in all cases and fit the data. In fact, drawdown objective functions were very 

similar in all cases (Table 1). Despite the best match to drawdown data is obtained when 

the plausibility term is neglected, the drawdown fits for the optimum identification of 

the log10T field (optimum weighting scalar µ) where nearly as good as the best ones 

(µ→0) and the simulation was stable.  
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Figure 4. Support function of the expected likelihood  and estimation errors versus μ and: (a) Support 
function S2, (b) Mean error Tlog10e , (c) RMSE (dashed horizontal line displays theoretical threshold 

value of 

Tlog10

2 ) 
 

6. Conclusions 
 

 

The pilot points method provides a powerful tool for the identification of the field 

functions ruling the behavior of a PDE. The suggested approach includes a plausibility 

term in the optimization process and two ways for calculating the initial drift, by 

conditional estimation or simulations conditioned to the direct measurements of the 

field function. Conditional estimation leads to optimal results (i.e., minimum estimation 

errors) but fails to reproduce small scale variability, which may be important when 

using the model for predictions. Instead, conditional simulation seeks a set of equally 

likely realizations of the field conditioned to all available information. Both variants 

have been tested on a synthetic example using the parabolic groundwater flow equation, 

examining the role of the plausibility term. 
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Figure 5. Qualitative comparison of the results: Row 1. “True” field, log10T conditioning measurements, 
common scale bar and situation of pilot points. Row 2: drifts to be perturbed (column 1 obtained by 
ordinary kriging of the log10T measurements; columns 2 and 3 by sequential simulation). Rows 3-6 
display the results after conditioning to log10T and drawdown measurements with varying weight μ. The 
“true” field is resembled when optimum weight is assigned, as measured by S2 (in all cases, when μ 
equals 0.1). Conditional estimation resembles the large scale patterns of the “true” field, despite the 
identifications of the spatial variability are oversmoothed. 
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 We have found that, neglecting the plausibility term, which is the standard 

approach in the context of pilot points, favors the best match of drawdown data, but 

often leads to an unstable identification of the model parameters. Large values give too 

much importance to the plausibility term, which biases the solution towards the drift. If 

the geostatistical model contains little information of the variability patterns (as in our 

synthetic example), the solution yields poor identifications of the spatial variability. In 

fact, a disturbing finding is that, in most cases, conditioning the fields to state variable 

data worsens the results if the plausibility term is not weighted properly. Fortunately, 

the use of a statistical framework (maximum likelihood in this case) allows the 

estimation of the optimum weight of the plausibility term, and therefore, its use is 

recommended. However, to search this optimum weight for each conditional simulation 

can be tedious. 

 

A key finding of this work is that the optimum value of the weighting factor (as 

measured by the support function of the expected likelihood) was the same as the one 

obtained using conditional estimation. This frees the modeler of the burden of having to 

seek the optimum weight at each conditional simulation (usually a large number). 

 

Good fits to measured state variable were obtained when neglecting (assigning 

low weight to) prior information. Still, fits nearly as good were obtained with stable 

simulations when moderate weights were assigned to prior information. We stress that 

the prior information provides a valuable data of aquifer heterogeneity, even when it is 

poorly informative of the actual variability. Thus, the use of a plausibility term 

including it (usually disregarded in the context of pilot points) needs to be considered. 
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Figure 6. Time evolution of measured (circles) and computed drawdowns in response to pumping at B-3 
at selected observations points. Results of conditional estimation (black line) and two of the conditional 
simulations are presented. Notice that the fit of drawdown data is almost the same in the three cases. 
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1. Abstract  
 
 

Small scale variability of hydraulic conductivity is relevant for properly simulating 

transport through heterogeneous media. Accepting that this scale of variability cannot 

be characterized, we aim at evaluating whether the presence of high frequency 

fluctuations, which define small scale variability, impedes the characterization of large 

scale variability patterns. In parallel, we investigate whether including small scale 

variability allows us to reproduce tailing in breakthrough curves. To this end, we apply 

the regularized pilot points method for simulating fields conditioned to available 

hydraulic information. Calibrated fields are applied to the prediction of a transport 

problem. Heterogeneity of hydraulic conductivity is represented by two nested 

variograms simulating small scale variability (short range variogram) and large scale 

patterns (long range). Application to four synthetic examples (with different importance 

of the small scale variability) show that, first, the calibrated fields reproduce the 

statistics of the “true” ones and, second, small scale variability is not critical for flow 

problems. More important, small scale variability leads to increased tailing in solute 

breakthrough curves and needs to be acknowledged for proper transport prediction.  

 
 

2. Introduction 
 
 
 
Characterization of heterogeneity is essential for contaminant transport. Solutions 

obtained using the advection-dispersion equation (ADE) while ignoring spatial 

variability display numerous departures from field observations. These include the well 

known scale effects of dispersivity (Gelhar, 1986; Lallemand and Peaudecerf, 1978; 

Neuman, 1990), but also directional effects of porosity (Sanchez-Vila et al, 1997; 

Neuman, 2005) and tailing in the breakthrough curves (Kennedy and Lennox, 2001; 

Fernandez-Garcia et al, 2005). The latter becomes critical for the design of remediation 

systems or the migration of contaminants from a geological waste disposal. The 

literature shows consistent discrepancies between the measured breakthrough curves 

(BTCs) predicted by the ADE and the measured ones (Vallochi, 1985; Carrera, 1993; 

Cortis and Berkowitz, 2004; Kosakowsky, 2004).  
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Tailing in BTCs is usually simulated by adding terms representing the exchange 

of solute between mobile and immobile regions (multirate mass transfer) to the ADE 

(Rasmuson, 1985; Haggerty and Gorelick, 1995). These terms can be represented by 

means of a memory function (Carrera et al, 1998; Haggerty et al, 2000). The concept 

has been generalized by the continuous time random walk approach (Kosakowsky et al, 

2001; Dentz and Berkowitz, 2003; Margolin and Berkowitz, 2004), which allows for a 

systematic study of the transition from normal (Fickian) to anomalous transport 

behavior. However, none of these approaches links explicitly the additional terms to 

actual variability patterns, so that it is not possible to define them a priori. 

 

While tailing may be attributed to heterogeneity, stochastic research has 

concentrated on explaining the scale growth of observed dispersivities (Dagan, 1986). 

In this context, the universal scaling theory of Neuman (1990) is particularly relevant to 

our work. According to this theory, hydraulic conductivity displays many scales of 

heterogeneity at any given sample size. In fact, it is this superposition what explains the 

observed scale dependence of dispersivity. For simplicity, we consider only two scales 

of variability. The large scale is comparable to the domain size. Variability at this scale 

can be characterized using geological maps, geophysics, model calibration, etc. Small 

scale variability is defined by (high frequency) fluctuations at length scales smaller than 

typical distances between boreholes. Its characterization is difficult with usually 

available data. As a result, small scale variability is often disregarded in 

hydrogeological modeling. In fact, Rubin et al (2003) developed an approach to define 

dispersivity as a function of the scale of variability truncated by modeling. 

Unfortunately, it is not known if the superposition of variability scales reproduces 

tailing. Certainly, ignoring small scale variability does not help. 

 

Methods devoted to the identification of heterogeneity can be classified in two 

groups, termed conditional estimation and conditional simulation methods. The first 

group seeks a deterministic, though uncertain, optimum characterization in the sense of 

minimum estimation error, honoring all available data (typically, hydraulic conductivity 

and head measurements). This group includes linearized cokriging (Kitanidis and 

Vomvoris, 1983), conditional expectation (Dagan, 1985) and maximum likelihood 
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estimation (Carrera and Neuman, 1986), among others. While formulations of this 

group are different, they do not vary from each other in the essence (Carrera et al, 

2005). All of them neglect the effect of small scale variability. This limitation can be 

overcome by conditioning moment equations, where one seeks estimates of mean 

parameters while acknowledging the effect of small scale variability (Hernandez et al, 

2003, 2006). Conditional simulation methods are explicitly stochastic. They yield a 

number of equally likely realizations of the unknown field conditioned to all available 

information [Sahuquillo, 1992; Gomez-Hernandez et al, 1997; Capilla et al, 1999; 

Hendricks-Franssen, 2001, Hendricks-Franssen et al, 2003].  

 

The pilot points method (de Marsily et al, 1984; Alcolea et al, 2006a and b; 

RamaRao et al, 1995; Lavenue and Pickens, 1992) is a flexible parameterization 

technique, that can be used both for conditional estimation and for conditional 

simulation. It allows reproducing the effect of small scale variability. It has been 

successfully applied to a number of problems (RamaRao et al, 1995; Vesselinov et al, 

2001; Hernandez et al, 2003). Yet, it suffers a number of limitations, including 

instability. Alcolea et al (2006a and b) extended the method by adding a regularization 

term. This allowed them to use a large (of the order of 200) number of pilot points, thus 

being able to properly resolve the large scale trends of variability. This approach should 

help in realizing the hope of simulating hydraulic conductivity fields that are consistent 

with available large scale data and yet contain high frequency fluctuations. We argue 

that doing so in a consistent and reproducible manner is required for proper simulation 

of contaminant transport in hydrological practice. 

 

The objective of this paper is to present a step in this direction. Specifically, we 

aim at evaluating whether the presence of high frequency fluctuations impedes the 

characterization of large scale variability trends. In the negative case, whether including 

small scale fluctuations allows us to reproduce tailing in BTCs. 
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3. Inversion methodology 
 

The inversion technique used in this work is a modification of the pilot points method 

(de Marsily et al, 1984; Lavenue and de Marsily, 2001; Gomez-Hernandez et al, 1997), 

including the use of a plausibility term. Algorithmic details of this methodology can be 

found in the work of Alcolea et al (2006a and b). The procedure can be summarized as 

follows: 

 

3.1) Parameterization. The unknown hydraulic property (typically log10K) is 

expressed as the superposition of two fields: a drift and an uncertain residual. 

The latter is a linear combination of the model parameters (value of the 

property at the pilot points locations). The drift can be calculated by 

conditional estimation or conditional simulation, in which case the drift is a 

random function. In both cases, all available information (direct 

measurements, geophysics, geological data, etc) can be used for 

conditioning. 

3.2) Optimization of the model parameters. The optimum set of model 

parameters minimizes an objective function F that quantifies the misfit 

between calculated and measured data: 

( ) ( ) ( ) (
i j

ntyparnstat t t* 1 * * 1 *
i i i s i i j j j p j j

i 1 j 1

F( ) − −

= =

= β − − + μ − −∑ ∑p s s V s s p p V p )p  
(1)

where the first term measures the misfits between calculated and measured 

‘nstat’ types of state variables (si and si
 * respectively) and the second is a 

plausibility term which measures the departure of the model parameters (pj) 

from their prior information (pj
*; ‘ntypar’ denotes the number of types of 

parameters). Vs and Vp (block matrices containing and
isV

jpV , respectively) 

are the best guess of the corresponding covariance matrices and βi and μj are 

weighting scalars correcting the specification of and
isV

jpV , respectively. 

Prior estimates of model parameters can be calculated by conditional 

estimation or simulation to available measurements. For the case of 

conditional estimation, Vp is the kriging error covariance matrix (Vk).  Vp is 

corrected if conditional simulation is performed (Vp = 2Vk; see appendix 1). 
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3.3)     Finding the optimum weighting scalars βi and μj (a posteriori statistical 

analysis). The optimization process is repeated using different values of the 

weighting scalars, whose optimum values are the ones leading to the 

maximum of the expected likelihood of the parameters given the data 

(Medina and Carrera, 2003). Assigning low weights (µj) to model parameters 

disregards their prior information, but leads to the best fit of the measured 

state variables. On the contrary, assigning large weights to model parameters 

disregards the measured state variables, biasing the solution towards prior 

information.  

 

4. Procedure for representing small scale variability 
 

The objective of this work is to test the ability of the above inversion methodology for 

reproducing the effect of the small scale variability of hydraulic conductivity (although 

the procedure can be applied to any other parameter type). Accepting that the high 

frequency fluctuations cannot be characterized, we aim at evaluating if their presence 

impedes the characterization of large scale variability patterns. To this end, estimated 

(CE) and simulated (CS) drifts are conditioned to log10K measurements (Y hereinafter) 

and to Y and drawdown measurements (‘s’ hereinafter). The outcomes are compared 

both qualitatively (drawdown fits, Y maps and histograms) and qualitatively (estimation 

errors). In parallel, we investigate the effect of the small scale variability of hydraulic 

conductivity on BTCs tailing. To this end, we apply the estimated/simulated fields to 

the prediction of a transport problem.  

 

The procedure is tested using four synthetic cases on a single domain with 

increasing level of small scale variability. In essence, the procedure follows the steps of 

Meier et al (2001), Hendricks-Franssen (2001), Alcolea et al (2006a). It consists of 

generating data from a synthetic problem and then using this data to test the 

effectiveness of the inversion methodology.  Specifically, our work consists of the 

following steps: 

 

1) Define the problem setup. 

2) Generate four “true” Y fields with increasing small scale variability. 
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3) Generate the available drawdown data. 

4) Calibration of Y fields using the regularized pilot points method. 

5) Application of the calibrated Y-fields to a transport prediction. 

These steps are outlined below. 

 
 

4.1 Problem domain 
 

The problem domain is a 400x400 m2 square that is discretized using elements of 

10x10 m2. This is enlarged to a global domain of 3800x3800 m2 (Figure 1) to avoid 

spurious boundary effects. Hydraulic tests and transport prediction take place in the 

central portion. Outside, the element size increases as the mesh progresses towards the 

boundaries. The whole domain is used for flow calibration, while only the central 

portion is used for transport predictions. 
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Figure 1. Flow domain and location of conditioning measurements. The inset bounds the zone of interest 
(model domain for transport prediction).  
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4.2 Generation of the “true” conductivity fields 
 

First, we select 10 measurement locations at the central part of the domain and 

fix a value of Y at those points (common for all four tests). Then, we generate four 

“true” Y fields (Figure 2) by sequential simulation using the code TRANSIN (Deutsch 

and Journel, 1992; Alcolea et al, 2006c), conditioned to the ten measurements and the 

geostatistical models presented in Table 1. The models are stationary with a variance of 

2. Their spatial variability is simulated by two nested spherical variograms of 40 and 

200 m range, representing the small and large scales of variability, respectively. The 

four structures differ on the weight assigned to the short range variogram, ranging from 

none (NH) to 75% (HH). The procedure is such that the measurements are slightly 

biased with respect to the “true” fields. 

 
NH test LH test 

MH test HH test 
 -6.0 

 -9.0 

 -3.0 

 0.0 
Y(m/s) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Zone of interest of the “true” Y fields. Notice that the large scale trends of NH (low Y in the 
middle, high Y in the lower two corners, etc) are reproduced in all realizations. Still, small scale 
variability, as reflected by the granularity of the fields, increases from NH to HH. 
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Table 1. Statistical parameters of nested structures defining variograms used for the generation of the 

four “true” log-conductivity fields. 

  Nested structure defining 

  Small scale heterogeneity Large scale heterogeneity 

Synthetic test 

Small scale 

variability Range (m) 

Sill 

(log10[m/s]2) Range (m) 

Sill 

(log10[m/s]2) 

NH None --- --- 200 2 

LH Low 40 0.5 200 1.5 

MH Medium 40 1.0 200 1.0 

HH High 40 1.5 200 0.5 

 
 

4.3 Generate drawdown data  
 

Drawdown data comes from three independent pumping tests in the most 

productive wells of the central part (pumping rates of 10-3 m3/s at wells B1, B2 and B3 

in Figure 1). “Real” steady-state drawdowns were simulated at grid nodes (Figure 3a) 

using the four “true” Y fields and prescribing a zero drawdown as initial conditional and 

at the boundaries. Drawdowns were calculated at the ten measurement locations of 

Figure 1. A Gaussian white noise was added to those data to simulate measurement 

errors, with a standard deviation of 0.25 m for the pumping test at well B1 and 0.15 m 

for the pumping tests at wells B2 and B3 (1% of the maximum drawdown at each test).  

 

4.4 Calibration of the Y fields using the regularized pilot points method  
 

Conditional estimation and twenty conditional simulations of the Y field are 

obtained for each test (a total of 84 calibrations), by conditioning the model to the 

available Y and drawdown measurements, as well as their initial drifts (conditioned to 

the geostatistical model and Y measurements only). The geostatistical models are 

considered known and error-free (Table 1). Regarding pilot points, they are arranged on 

a regular network of 81 points within the zone of interest (4.5 pilot points per 

correlation range in each direction). Sixteen additional points are located beyond the 

zone of interest (coarse discretization at Figure 1). This number of pilot points is larger 
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than traditionally used in the pilot points method (de Marsily et al, 1984; Gomez-

Hernandez et al, 1997). However, the use of a plausibility term adds stability to the 

formulation of the inverse problem and therefore, permits us to use as many pilot points 

as computationally feasible (Alcolea et al, 2006a).  
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Figure 3. “True” steady state drawdowns (in meters) at the zone of interest. Crosses at pictures in row 1 
depict the location of pumping wells. 
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Following the methodology of Medina and Carrera (2003) and Alcolea et al 

(2006b), the a posteriori statistical analysis (step 3 in the inversion methodology) was 

performed for each realization of the Y field, finding the optimum weights for both 

conditional estimation and simulations. These weights were always 1.0, both for the 

term of state variables and for the plausibility term. 

 

4.5 Application of the calibrated Y-fields to a transport prediction 
 
 

The transport problem used for predictions consists of the instantaneous invasion 

of a solute in the zone of interest. To this end, we first simulate a steady state flow field 

in the finely gridded central domain (Figure 1) by imposing no flow at the left and right 

segments and a head gradient of 4/400 between the lower and upper segments. The 

solute enters the domain with a concentration of 100 ppm through the lower segment. 

Transport parameters are constant, with longitudinal and transversal dispersivities of 8 

and 1 m, respectively, a 0.1 porosity and a 0.01 m saturated thickness. Concentrations 

are displayed in Figure 4. Integrated flux averaged BTC at the upper segment will be 

used for evaluating the transport predictions. 

NH test LH test MH test HH test 

 
 
Figure 4. “True” log10 concentrations after 9900 seconds (row 1), 39000 seconds (row 2) and 1.4 105 
seconds (row 3).  
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5. Results 
 

Results are evaluated both qualitatively (Y maps and histograms and concentration fits) 

and quantitatively. Quantitative analysis is performed using an error vector e, defined as 

the difference between calculated and “true” values of the Y field at each block of the 

zone of interest (1600 blocks of 10x10 m2). We use the following statistics for 

analyzing results from the estimation process: 

1) Total objective function (F in equation 1). 

2) Mean absolute error of the Y field: 
1600 1600

true calc
Y i

i 1 i 1

1 1e e Y
1600 1600= =

= = −∑ ∑ Y (2)

3) Root mean square error of the Y field (RMSEY) and the analogous 

magnitudes for drawdowns and concentrations (RMSEs and RMSEc, 

respectively) 
1

1600 2
2

Y i
i 1

1RMSE e
1600 =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ (3)

 

We test the performance of the calibrated fields for predicting transport BTCs, 

using the peak concentration and arrival time as well as the slope of the tail. The latter is 

obtained through regression of late time concentrations. The late time portion of the 

BTC often displays a “bumpy” aspect due to the development of preferential flow paths. 

As a result, the definition of this slope is somewhat arbitrary. We chose as “late time” 

the portion with concentrations three orders of magnitude below the peak. 

 

Calibration results are presented first. The Y fields and estimation errors are 

presented in Figure 5. The histograms of the Y values and the corresponding statistical 

moments are depicted in Figure 6 and Table 2, respectively. The total objective function 

is depicted in Figure 7 and the matching to drawdown data is summarized in Table 3. 

Regarding the transport prediction, the BTCs obtained with the calibrated Y fields are 

presented in Figure 8. The corresponding flow and transport mass balances are depicted 

at Figure 9. Peak concentrations, arrival times and the slope characterizing the late time 

behavior of the BTC are summarized in Table 4. 
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The first observation that becomes apparent from Figure 5 is the strong effect of 

the conditioning to drawdown data. For any given test and realization (CE or CS), the 

field conditioned only to Y measurements is qualitatively worse than the one obtained 

by conditioning to drawdown and Y data. Therefore, calibration to drawdown data 

using the optimum weight of the plausibility term reduces estimation errors. The 

reduction is not dramatic in terms of estimation errors (both eY and RMSEY are reduced 

by about 30%). Conditioning to drawdowns improves the overall look of the computed 

field (it resembles vaguely the “true” field), but not so much the actual point values. In 

fact, in terms of point estimation errors, conditional estimation is consistently better 

than conditional simulation. 

 

The main difference between conditional estimation and simulation stems from 

the variability, which is best analyzed through the histograms (Figure 6).  Histograms of 

the conditional estimation to Y measurements, CE(Y), are almost symmetric around the 

mean value of the Y measurements (Figure 6), as measured by the small skewness of 

the distribution (Table 2). This effect becomes increasingly apparent with increasing 

relevance of small scale variability, as measured by the variances (decrease), the 

skewness (tend to zero) and the kurtosis coefficients (increase) at Table 2. Thus, 

histograms of CE(Y) (for any given relevance of the small scale variability) are centered 

on the mean and are sharper as the relevance of the small scale variability increases. The 

same effect, though less notable, can be observed in the fields characterized by 

conditional estimation to Y and drawdown data, CE(Y, s). However, these outcomes are 

better as these fields are biased towards the mean value of the corresponding “true” 

field. In summary, conditional estimation to Y measurements only leads to fields that 

are too homogeneous (narrow histogram) and centered around direct measurements. 

Adding drawdowns to conditioning data broadens the histogram and displaces it 

towards the “true” mean, but not sufficiently.  

 

On the other hand, simulations (regardless the type of conditioning data) yield 

more realistic results (Figure 5), even though their estimation errors are larger than the 

ones obtained by conditional estimation. Simulations conditioned only to Y data, 

CS(Y), overestimate conductivities (Figure 6) because measurements present a positive 

bias. Fortunately, conditioning to drawdown data helps alleviating this problem and the 

ensembles of simulations conditioned to Y and drawdown data, CS(Y,s), resemble (for  
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Data
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Figure 5. Y fields obtained for the largest relevance of the small scale variability (HH test; subset of 
pictures at the right of the Figure) and when this variability is neglected (NH test). Two columns are 
displayed for each subset. Left column displays the Y field conditioned to Y measurements only. Right 
column displays the Y field conditioned to Y and drawdown measurements. Row 1 contains the “true” Y 
fields. Row 2 contains the estimated fields and rows 3 and 4 contain the results of two out of twenty 
simulations. 

 

any given relevance of the small scale variability) the histogram of the “true” fields 

(Figure 6) and the first two moments of the corresponding distributions (Table 2).  

 

Analyzing the role of small scale variability on calibration is complex. We use 

drawdown fits (RMSEs at Table 3) and the total objective function F (Figure 7) to 

analyze the improvement caused by conditioning. Best results are often obtained when 

the relevance of small scale variability is negligible (NH test). This case yields the 
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smallest values of F and RMSEs in most cases, because the “true” field is smoothest 

(Figure2) and, thus, easiest to characterize. However, results do not degrade 

monotonically with increasing relevance of small scale variability. In any case, RMSEs 

are very small for all realizations (even smaller than the standard deviation of 

measurement errors, which suggests a certain overestimation) and display little 

dependence on the level of small scale variability. In summary, small scale variability 

does not control the behavior of steady-state heads, which is ruled by the large scale 

heterogeneity patterns. This implies that hydraulic data will not suffice for 

characterizing high frequency fluctuations. Yet, small scale variability becomes 

important for modeling contaminant transport. The late time behavior of the BTCs 

depends to a large extent on small scale variability. Regardless the type and number of 

conditioning data, conditional estimation, which yields smooth Y fields not capable of 

reproducing the small scale variability, does not match the slope of the late-time portion 

of BTCs (Figure 8). In fact, the error in the calculated slope increases as the relevance 

of the small scale variability becomes more important (Table 4). On the contrary, most 

conditional simulations reproduce this slope, even when only Y measurements are used 

for conditioning. In this case, breakthroughs are too fast and peak concentrations too 

high, reflecting the high bias of K measurements. Moreover, simulated BTCs span a 

very broad range. Yet, all simulations display a tail similar to the “true” BTC.  
 

Table 2. Statistical moments of the distribution of measurements, “true” and calibrated fields (in bold, 

values of mean and variance which are closest to the “true” ones). 

 
  Mean Variance Skewness Kurtosis 
Measurements  -3.94 1.50 0.04 0.69 

True field -4.60 1.57 -0.32 -0.14 
CE (Y) -3.90 0.47 -0.36 0.10 
CE (Y,s) -4.33 0.73 0.29 -0.31 
CS (Y) -3.95 1.50 -0.05 -0.04 

NH test 

CS (Y,s) -4.53 1.52 -0.16 0.16 
True field -4.65 1.47 -0.11 -0.01 
CE (Y) -3.93 0.25 -0.28 1.06 
CE (Y,s) -4.48 0.53 0.18 -0.32 
CS (Y) -3.99 1.73 -0.04 0.01 

LH test 

CS (Y,s) -4.68 1.75 -0.11 0.14 
True field -4.68 1.55 0.05 -0.04 
CE (Y) -3.94 0.14 -0.14 3.78 
CE (Y,s) -4.58 0.42 0.15 -0.10 
CS (Y) -4.01 2.02 -0.04 0.03 

MH test 

CS (Y,s) -4.74 1.88 -0.10 0.07 
True field -4.71 1.71 0.12 -0.08 
CE (Y) -3.95 0.07 -0.02 12.87 
CE (Y,s) -4.63 0.33 0.23 0.32 
CS (Y) -4.01 2.33 -0.05 0.04 

HH test 

CS (Y,s) -4.79 2.07 -0.07 0.04 
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Figure 6. Histogram of Y fields. Results of conditional simulation are the ensemble of 20 realizations. 
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Figure 7. Total objective function for all realizations, when both Y and drawdown measurements are 
used for conditioning.  

 

The impact of using also drawdowns for conditioning is manifested again in 

Figure 8 and Table 4. First, errors in peak time, peak concentration, final slope and 

RMSEc decrease as expected (both for conditional estimation and simulation). Second, 

the uncertainty of the predicted BTCs using conditional simulations is reduced 

substantially, as measured by the statistics listed at Table 4. Qualitatively, one can 

observe how the true BTCs are bounded by the set of predicted BTCs obtained with the 

simulated fields, for any given relevance of the small scale variability. This is 

corroborated by the reduction in the variances of the statistics listed in Table 4. It is also 

relevant to point out the non monotonic dependence of uncertainty with the degree of 

small scale variability. Uncertainty, as measured by the breath of the envelope of 

simulated BTCs, is smallest for the two extreme cases. In the NH case, this reflects that 

the field is sufficiently smooth to be quite well estimated with hydraulic data. In the 

case of high local heterogeneity (HH), small uncertainty reflects that the precise details 

are unimportant. BTCs may be more controlled by the presence of small variability 

patterns than by their precise details. 
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Table 3. Root mean square error of drawdowns (RMSEs) for all realizations. In bold, conditional 

simulations yielding worse drawdown fits than the corresponding conditional estimation. 

 HH test MH test LH test NH test 
  CE (Y,s)    9.09E-02 8.52E-02 8.27E-02 6.55E-02 
  CS1 (Y,s)     9.57E-02 1.03E-01 9.32E-02 4.60E-02 
  CS2 (Y,s)     6.15E-02 6.11E-02 5.94E-02 5.28E-02 
  CS3 (Y,s)     7.51E-02 1.49E-01 1.11E-01 5.90E-02 
  CS4 (Y,s)     6.95E-02 6.95E-02 5.87E-02 6.26E-02 
  CS5 (Y,s)     6.76E-02 1.49E-01 1.15E-01 1.59E-01 
  CS6 (Y,s)     3.45E-02 3.42E-02 2.48E-02 4.12E-02 
  CS7 (Y,s)     7.07E-02 8.00E-02 1.55E-01 6.18E-02 
  CS8 (Y,s)     5.89E-02 6.69E-02 5.30E-02 4.55E-02 
  CS9 (Y,s)     6.64E-02 6.98E-02 5.23E-02 4.60E-02 
  CS10 (Y,s)   9.96E-02 1.01E-01 8.40E-02 6.57E-02 
  CS11 (Y,s)   7.80E-02 6.54E-02 6.57E-02 6.18E-02 
  CS12 (Y,s)   9.42E-02 9.44E-02 5.87E-02 6.22E-02 
  CS13 (Y,s)   4.37E-02 3.94E-02 3.71E-02 4.95E-02 
  CS14 (Y,s)   9.96E-02 9.01E-02 2.76E-01 1.40E-01 
  CS15 (Y,s)   6.76E-02 4.80E-02 4.42E-02 5.55E-02 
  CS16 (Y,s)   8.16E-02 5.60E-02 4.26E-02 4.14E-02 
  CS17 (Y,s)   4.90E-02 3.82E-02 3.47E-02 3.79E-02 
  CS18 (Y,s)   1.13E-01 6.40E-02 5.37E-02 5.24E-02 
  CS19 (Y,s)   4.99E-02 4.37E-02 3.61E-02 3.87E-02 
  CS20 (Y,s)   6.72E-02 6.23E-02 4.77E-02 4.33E-02 
Mean CS 7.22E-02 7.43E-02 7.51E-02 6.11E-02 
Variance CS 4.18E-04 1.01E-03 3.11E-03 9.52E-04 
 

Flow mass balance is somewhat independent of the relevance of the small scale 

variability (Figure 9a) and both conditional estimation and conditional simulation 

methods yield flow mass balances close to the “true” ones (for any given relevance of 

the small scale variability). This result confirms that large scale patterns of 

heterogeneity rule the flow behavior. On the contrary, transport mass balance depends 

to a large extent on, first, the type of conditioning (estimation / simulation), and second, 

the relevance of small scale variability. Comparing the mass balances of conditional 

estimation and any of the realizations of conditional simulation, one can see that 

conditional simulation resembles better the “true” mass balance.  The smoothness of the 

conditional estimation Y fields favors that most solute mass has been washed away by 

the end of the simulation. As variability increases, increasing portions of mass remain 
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retained in low permeability areas. This is what explains the huge differences in solute 

mass in Figure 9b as well as the differences in tailing slope. 
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Figure 8. BTCS of the transport prediction for the Y fields conditioned to Y measurements only (left 
column) and Y and drawdown measurements (right column). “True” BTCs are depicted with dots, the 
BTC corresponding to the conditional estimation with thick line and the 20 BTCs corresponding to 
conditional simulation with thin grey line. 
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Figure 9. Mass balance of the transport prediction. a) Released volume of water throught the upper 
contour of the zone of interest, b) Tracer mass in the aquifer at the end of the simulation. 
 
 

6. Conclusions 
 
 

This work was motivated by the concept that one may be able to identify the 

large scale (low frequency) trends of spatial variability, but not the high frequency 

components. Yet, these are relevant for properly simulating and understanding solute 

transport through heterogeneous media. Accepting that small scale variability cannot be  
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Table 4. Peak time, peak concentration and late-time slope of the BTCs for the different realizations 

(mean value and variance for conditional simulations) 

  Conditioned to Y Conditioned to Y, drawdown 

  
log10 
Peak 
time 

log10 
Peak 
conc. 

Slope RMSEc

log10 
Peak 
time 

log10 
Peak 
conc. 

Slope RMSEc

“True” 6.40 -2.90 -2.96 --- 6.40 -2.90 -2.96 --- 
CE 5.78 -2.22 -7.85 9.34 10-4 6.54 -2.88 -4.16 8.16 10-5

CS (mean) 5.75 -2.26 -3.27 3.55 10-3 6.49 -2.96 -2.91 8.88 10-5
NH 
test 

CS (variance) 0.25 0.24 1.64 2.61 10-5 0.03 0.03 0.37 2.57 10-9

“True” 6.48 -2.96 -3.24 --- 6.48 -2.96 -3.24 --- 
CE 5.90 -2.31 -16.39 6.73 10-4 6.71 -3.04 -5.53 9.21 10-5

CS (mean) 5.77 -2.28 -3.54 3.35 10-3 6.59 -3.08 -2.97 8.64 10-5
LH 
test 

CS (variance) 0.25 0.22 8.61 2.37 10-5 0.05 0.04 0.93 3.25 10-9

“True” 6.56 -3.02 -2.44 --- 6.56 -3.02 -2.44 --- 
CE 5.95 -2.32 -27.78 6.29 10-4 6.77 -3.11 -4.62 9.26 10-5

CS (mean) 5.75 -2.27 -3.80 3.40 10-3 6.68 -3.14 -2.76 7.49 10-5
MH 
test 

CS (variance) 0.27 0.22 28.77 2.70 10-5 0.03 0.02 0.66 2.27 10-9

“True” 6.56 -3.02 -2.29 --- 6.56 -3.02 -2.29 --- 
CE 5.95 -2.29 -39.59 6.51 10-4 6.76 -3.10 -5.27 9.24 10-5

CS (mean) 5.73 -2.25 -4.23 3.55 10-3 6.68 -3.14 -2.74 7.90 10-5
HH 
test 

CS (variance) 0.27 0.22 62.43 3.29 10-5 0.04 0.03 0.75 2.25 10-9

 

identified, we follow on the steps of Gomez-Hernandez et al (1997), Hendricks-

Franssen (2001), RamaRao et al (1995). That is, we first simulate fields conditioned to 

all available direct measurements and conceptual constraints. Here, direct measurements 

were exact point measurements of log10K and the only conceptual constraint was the 

assumption that the “true” field was a stationary random field with two nested 

variograms. The resulting, random, drift is then perturbed so as to ensure that 

observations (here, drawdowns) are well fitted by the model, using the regularized pilot 

points method. The question is whether this approach does indeed allow accurate 

transport simulations. The application leads to the following conclusions: 

 

1) Adding a component of small scale variability (i.e. simulating log10K with two 

nested variograms) leads to increased tailing in transport simulations. The tail 

slope is much larger than that observed in practice (receeding limb too steep). 

Yet, our results suggest that the slope may be decreased by adding more nested 

variograms. This lends support to the universal scaling theory of Neuman. This 

theory was developed to explain scale effects in dispersivity. The fact that it also 

explains tailing can be viewed as an independent confirmation of the theory. 

 

2) Simulated fields reproduce the statistics of the “true” field. This confirms the 

results of Gomez-Hernandez et al (1997), Hendricks-Franssen (2001), RamaRao 

et al (1995). 
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3) Simulated fields reproduce the main features of “true” BTCs (arrival time, peak 

concentration and tail slope). This confirms the main conjecture that motivated 

this work, namely that one does not need to identify small scale variability, but 

to simulate its presence. 

 

4) When small scale variability is ignored, simulated BTCs reproduce arrival time 

and peak concentration, but not the tail. This is not critical when the small scale 

component (NH test) is negligible. In such cases, optimal (smooth) estimation of 

hydraulic conductivity yields good results. However, in view of the ubiquity of 

tailing, we feel that that this will be rarely, if ever, the case in practice. 

 

5) When calibration is not performed, simulated breakthrough curves reproduce the 

shape of “true” BTCs (in log t – log c scale), but they may be biased if direct 

measurements are biased, which we fear is often the case. 

 

Much remains to be done. Here we assumed that the structure of variability is 

known (known variograms). Moreover, the adopted structure is relatively simple 

(stationary random field defined by only two nested variograms). Dealing with more 

complex structures will be needed and will require overcoming several difficulties. In 

this context, the results presented here should be viewed as a hopeful step in the 

direction of simulating transport through heterogeneous media in a realistic manner. 
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Appendix. A priori covariance matrix of parameters 
 
 
The formulation of the regularized pilot points method requires the specification of the a 

priori covariance matrix of parameters. If kriging is used for defining the drift (step 1 of 

the inversion methodology), this matrix is the kriging covariance matrix. If simulation is 

performed, the covariance matrix is calculated as follows. 

 

Let Y be the vector of true values of the field at the ne points/blocks to be 

estimated. Let YK
 and YCS be the vectors of kriged and simulated values, respectively. 

Let VK and VCS be the kriging error and conditional simulation covariance matrices, 

respectively. M is a matrix such that VK=M·Mt and u is a vector of independent 

variables ui ~ N(0,1). 

 

 Conditional simulation can be expressed as:  
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YCS = YK
 +M·u [A1]

 

 The m-n-th component of the covariance matrix of CS errors is: 

(VCS)m,n = cov [ ,CS
m mY Y− CS

n nY Y− ] [A2]

 

Substituting equation [A1] in [A2]: 

( )

( )( )

( ) ( )

ne ne
K K

CS m m mj j n n nk km,n
j 1 k 1

ne ne
K K
m m n n mj nk j k

j 1 k 1

ne ne
K K

mj j n n nk k m m
j 1 k 1

E Y Y M u Y Y M u

E Y Y Y Y M M E u u

M E u Y Y M E u Y Y

= =

= =

= =

⎡ ⎤⎛ ⎞⎛ ⎞= − + − +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − + ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

∑ ∑

∑∑

∑ ∑

V

 [A3]

 

The last two terms are zero because u is independent of Y. The first term in the 

right hand side is the definition of kriging errors covariance matrix. Finally, the second 

term equals MMt=VK because the components of u are independent with unit variance. 

Therefore, 

CS K2=V V [A4]
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1. Abstract 
 
 
Remediation of contaminated aquifers demands a reliable characterization of hydraulic 

connectivity patterns. Hydraulic diffusivity is possibly the best indicator of 

connectivity. It can be derived using the tidal response method (TRM), which is based 

on fitting observations to a closed-form solution. Unfortunately, the conventional TRM 

assumes homogeneity. The objective of our work is to overcome this limitation and use 

tidal response to identify preferential flow paths. Spatial variability is characterized 

using the regularized pilot points method. The procedure requires joint inversion with 

pumping test data to resolve diffusivity into transmissivity and storage coefficient. 

Actual application is complicated by the need to filter tidal effects from the response to 

pumping and by the need to deal with different types of data, which we addressed using 

maximum likelihood methods. Application to a contaminated artificial coastal fill leads 

to flow paths that are consistent with the materials used during construction and to 

solute transport predictions that compare well with observations. We conclude that tidal 

responses can be used to identify connectivity patterns.  

 
 

2. Introduction 
 
 
The aim of this work is to characterize a contaminated site near the coast in Eastern 

Spain. Remediation requires identifying preferential flow paths (i.e., connectivity 

patterns) in the study area. Knudby and Carrera (2005) showed that hydraulic 

diffusivity, D (D=T/S where T and S are transmissivity and storativity, respectively) is 

possibly the best indicator of hydraulic connectivity. Therefore, one would expect that 

characterization methods leading to reliable estimation of diffusivity should also contain 

valuable information about connectivity of high hydraulic conductivity paths. Point 

values of effective hydraulic diffusivity, Deff, are easily obtained from the interpretation 

of tidal response at a borehole (Erskine, 1991; Schultz and Ruppel, 2002; Jhan et al, 

2003; Fakir, 2003; Shih and Lin 2004; Trefry and Bekele, 2004). The tidal response 

method TRM estimates Deff from the amplitude and / or the time lag of the tidal 

response at an observation borehole (Ferris, 1951; Hvorslev, 1951). This analytical 

solution assumes a one dimensional flow in a homogeneous and infinite confined 
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aquifer, which is subjected to a sinusoidal perturbation at its boundary (assumed 

vertical). Estimated Deff is often validated in parallel with the interpretation of hydraulic 

tests (Drogue et al, 1984; Millham and Howes, 1995). 

 

Efforts have been devoted to relaxing the TRM hypotheses. Li et al (2002) 

present an analytical solution in a confined and L-shaped aquifer, extending the solution 

to leaky aquifers (Li and Jiao, 2001). Anisotropy of hydraulic conductivity is assessed 

by Pandit et al (1991). One dimensional modelling of tidal propagation in a coastal 

aquifer with complex heterogeneity is explored by Trefry (1999). The effect of 

boundary heads representing tidal fluctuations is studied by Wang and Tsay (2001) and 

Jhan et al (2003), who use a superposition of harmonics.  

 

 Estimating Deff by the TRM and complementing it with hydraulic tests suffers a 

number of shortcomings. First, TRM yields point values of Deff, but does not 

acknowledge heterogeneity, which may affect the aquifer response to tides. Second, 

hydraulic test data may not be suitable for standard analysis due to the superposition of 

pumping and tidal effects (Trefry and Johnston, 1998; Chen and Jiao, 1999). TRM can 

be used for filtering the tidal effects, but requires a known hydraulic diffusivity. An 

additional shortcoming is that TRM does not represent real tide accurately (sinus 

function in the work of Chapuis et al, 2006 or a superposition of harmonics, Wang and 

Tsay, 2001; Jhan et al, 2003). 

 

We conjecture that geostatistical inversion may allow us to overcome the above 

drawbacks. First, strict hypotheses of the TRM are relaxed. For instance, complex 

model geometries and heterogeneities can be accommodated. Second, joint 

interpretation of tidal response at all boreholes of the observation network should yield 

the connectivity structure rather than a set of point values of diffusivity. Third, explicit 

numerical modelling of tidal fluctuation enables us to accommodate observed 

fluctuations of sea level, which contains both deterministic and random components. 

Fourth, numerical inversion facilitates explicit incorporation of hydraulic test data. This 

should lead to not only improve the identification of connectivity patterns (Carrera and 

Neuman, 1986a and c; Weiss and Smith, 1998), but also allows us to resolve diffusivity 

into transmissivity and storativity (Carrera and Neuman, 1986b, Rötting et al, 2006).  
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The objective of this work is to test the above conjecture. We present a 

procedure to integrate tidal response and injection test data so as to characterize 

connectivity patterns at coastal aquifers. The procedure is based on the regularized pilot 

points method (Alcolea et al, 2006a and b). The method is applied to a polluted site that 

consists largely of an artificial fill. This allows us to compare “as-built” maps with 

preferential flow paths derived from inversion. 

 
 

3. Site description 
 
 
The study area (Figure 1) is located at the edge of an unconfined coastal aquifer. It is 

made up of an anthropogenic fill lying on top of Quaternary conglomerates (zone 1). 

The anthropogenic fill consists of several zones (2 through 7 in Figure 1) where 

different materials were deposited down to 10 m deep. The mean depth of the water 

table is 5 m. Thus, zones with a saturated thickness of around 5 m, some filled with 

highly conductive material can be found. These zones become preferential flow paths. 

 

The site was occupied by a factory. A review of the factory construction project 

reveals an approximate location of zones of anthropogenic heterogeneity (Figure 1): 

 

- Seawater pipelines (zone 2). An underground concrete structure (3.5 m 

thick) is located on top of the conglomerate base in this zone. This structure 

contains seawater pipelines and was covered with a gravel fill. While the 

structure reduces the saturated thickness, which is approximately 1 m in this 

zone, large transmissivity values are expected. 

 

- Seawater pipelines filling (zone 3). Conglomerates in zones 2 and 3 were 

dug to accommodate the seawater pipelines. Thereafter, anthropogenic 

material was used to fill up this excavation. Presumably, this highly 

conductive material and the elongated shape of this zone render it the most 

suitable preferential flow path. 
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1.       Quaternary conglomerates 
2.       Seawater pipelines 
3.       Seawater pipelines filling 
4, 5, 6.  Granular fill & tetrapods 
7.          Concrete structures 
A.         Clean-up plant 

Figure 1. Site description state. The study area (below) lays on top a Quaternary conglomerate (zone 1). 
Zone 2 accommodates two pipelines for sea water pumping. Zones 4, 5 and 6 represent land gained from 
the sea, covered with tetrapod marine defences. They cover the sea-shore except in its middle part 
(depicted by crosses), where a concrete wall panel was built for protection. Zones indicated by ‘7’ are 
concrete structures that cover almost the whole saturated thickness. Contamination has been detected in 
the three shaded zones, where the discharge pipeline (dashed line) was presumably broken. Observation 
boreholes are depicted by black circles. 
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- Land gained from the sea (zones 4, 5 and 6). The conglomerate base in these 

areas is covered with granular fill and tetrapod marine defences.  These 

structures protected the factory from the sea. A concrete wall panel protected 

the factory in the middle part of the shore (depicted by crosses in Figure 1). 

Presumably, this wall covers almost the whole saturated thickness. 

 

- A discharge pipeline (dashed line in Figure 1) was placed in the non 

saturated zone of the aquifer. Two concrete structures (zones 7) were built to 

support this pipeline. The construction project reveals these structures cover 

the whole saturated thickness. 

 

Prior field-work in the study area detected a contamination in the shaded zones 

of Figure 1. Presumably, the discharge pipeline was broken in these zones. Although 

prior studies estimated that the breach occurred in 1975, it was not detected until 1992. 

Thus, the contaminant spilled and accumulated in the non saturated zone for a long 

time. The ultimate objective of this work is to characterize the study area to design a 

remediation system. 

 
 

4. Methodology 
 

4.1 Tidal fluctuation response 
 

Absolute pressure was automatically recorded at the sea shore (SS in Figure 1) 

and at twenty boreholes using TD-Diver (Van Essen Instruments, Schlumberger). These 

measurements were transformed into relative pressures by subtracting barometric 

pressure (measured at borehole S22 using BaroDiver, Van Essen Instruments, 

Schlumberger). Next, heads were obtained as the sum of pressure head and diver 

elevation. 

 

The very high frequency fluctuations of sea-level (i.e., due to wind and waves) 

were filtered out as they are assumed not to propagate far within the aquifer. To 

simplify boundary and initial conditions, we express tidal response in terms of 

variations with respect to natural heads. Thus, we only need to simulate head changes 
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induced by sea-level fluctuations, but not the regional flow in the aquifer. To this end, 

head measurements at every borehole were corrected by subtracting their mean value. 

 

Unbiasedness in the calculation of mean head at a borehole requires a long 

measurement period. This long record was not available at most boreholes because we 

did not have enough pressure sensors (only boreholes S5, S9 and SS were continuously 

monitored for 41 days). In addition, measured heads during injection periods were 

suppressed as tidal and injection effects were superimposed. We used kriging with 

external drift for filling these gaps (lack of monitoring and injection periods) using the 

records at boreholes S5 and S9 (not affected by injections) as external drifts. The 

procedure is outlined in Appendix 1. 

 

4.2 Hydraulic tests 
 
 

Two injection tests were performed in the area of interest. Relevant data about 

these tests are summarized in Table 1. Even though injection rates were very high, the 

observed response to injections at monitored boreholes reached a maximum of only 4 

cm. Thus, it was masked by tidal effects (amplitude of tide is ~ 40 cm). Reconstruction 

of head evolution during injection periods, as described in previous section, allows us to 

filter the tidal effect. Simply, we subtract the kriged values (in response to tidal effect) 

from the actual measured heads (Figures 2 and 3). 

 
Table 1.  Description of injection tests in the study area. 

 

 Injection 
type 

Injection 
rate 

(m3/d) 

Injection 
interval 

(d) 

Tot. inj. 
volume 

(m3) 

Recovery 
period (d) Available measurements 

Injection 
at  

S5-1 

In two 
steps 199 

0 - 0.26 
 

0.46 - 
0.90 

198 0.90 – 
1.40 

S5, S6, S9 (no response) 
S12-1, S24, S25, S26, S29 

Injection 
at  

S25 
Continuous 130 0 - 0.5 66 0.5 – 1.05 

S5, S7, S8,S9 S26, S29 
(no response) 

S24 
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Figure 2. Kriged vs measured heads at borehole S24 during injection test 1 at borehole S5-1. 
 
 

 
 
Figure 3. Filtered response to injection test 1 at borehole S24. 
 
 

A preliminary interpretation of these injection tests was performed using the 

code EPHEBO (UPC, 2002; Table 2). Estimated storativities were about 0.1 for the 

Quaternary conglomerates and 0.3 for the anthropogenic fill in most cases. Estimated 

transmissivities ranged from 15 to 350 m2/d for the conglomerates. Analysis of data at 

boreholes S12-1 (seawater pipeline) and S24 (seawater pipeline filling) yields 

transmissivities of 150 m2/d and 225 m2/d, respectively. However, this interpretation 
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displayed a large uncertainty (i.e., large confidence intervals in the estimation). We 

attribute this to the fact that all boreholes are partially penetrating (few centimetres in 

the saturated zone), which may lead to an underestimation of transmissivity values. 

 
Table 2. Available transmissivity measurements in the study area. This information arises from the 

standard analysis (e.g., homogeneous medium) of the injection tests at boreholes S5-1 and S25. 

 

Zone Borehole Transmissivity (m2/d)

S7 75 
S8 25 

S25 15 

S28 350 

Quaternary conglomerate 

S29 50 

Seawater pipeline S12-1 150 

Tetrapods (zone 5 in Figure 1) S24 225 

 
 

3.3 Model calibration 
 

Inversion methodology follows roughly the procedure described by Meier et al 

(2001) and Rötting et al (2006) to identify preferential flow paths. The main differences 

stem from (1) the use of the regularized pilot points method (Alcolea et al 2006a), (2) 

the use of tidal response data and (3) the anthropogenic nature of the site. This allows us 

to compare the flow paths obtained using only hydraulic data to those revealed by 

construction records.  

 

The regularized pilot points method parameterizes a hydraulic property 

(typically log10T) as the sum of a deterministic drift and an unknown residual. The drift 

is calculated by conditional estimation (ordinary kriging in this case) to available direct 

measurements, if any, assuming a known correlation structure defined by a variogram. 

The residual can be viewed as the perturbation needed by the drift to honour 

measurements of dependent variables (heads, concentrations, etc.). The optimum set of 

model parameters (value of the hydraulic property at the pilot point locations depicted 

in Figure 4) minimises an objective function F which accounts for matching 

measurements of dependent variables and parameter plausibility: 
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( )( ) ( )( ) ( ) ( )
i j

ntyparnstat t t-1 -1
i i i j j j j j

i=1 j=1

F = − − + μ −∑ ∑* * *
i u pu − *p u V u p u p p V p p  (1)

where “nstat” denotes number of state variables ui with available measurements ui
* and 

covariance matrix . In this case, two subsets of state variables were used (i=1 for 

tidal responses and i=2 for injection test data). We assumed to be diagonal 

( , where is the unknown standard deviation of the corresponding 

measurement type and I is the identity matrix). “ntypar” is the number of types of 

model parameters p

iuV

iuV

i

2
u u= σV

i
I

iuσ

j being calibrated (organized in vector p), with prior information  pj
* 

and covariance matrix 
jpV ( in this case, j=1 for pilot points related to transmissivities, 

j=2 for those of storativities, etc). 
jpV is the kriging error covariance matrix. pj

* is 

calculated in the same way as the deterministic drift. jμ  are weighting scalars correcting 

errors in the specification of the covariance matrices.  

 

Two model structures are used for representing the relation between dependent 

variables u and model parameters p. They differ in the specification of the geological 

zonation. First, we neglected such information, so that actual patterns of connectivity 

(as revealed by the construction project) were ignored. This first model structure is 

termed “hydraulic information-based model” hereinafter. Second, this information was 

explicitly stated in the model (“geology-based model”). For the latter, heterogeneity of 

log10T field in each zone was defined by an isotropic spherical variogram. The ranges 

were 50 m and 25 meters for the conglomerates and for the zones of anthropogenic 

heterogeneity, respectively. Corresponding sills were 1 and 0.5 (i.e., log10T can vary 

one order of magnitude – or half an order- within a correlation range). When the 

geological zonation was ignored, a single transmissivity zone encompassed the whole 

model domain. In this case, the variogram is spherical with range 50 m and a sill of 1. 

The few (and uncertain) log10T available measurements complicated the specification of 

the aforementioned variograms. This affects the calculations of pj
* and the 

corresponding covariance matrices and will be discussed later. Prior interpretation of 

injection tests (section 3.2) yielded almost constant values of storativity for the 

conglomerates and for the anthropogenic fill. Thus, regardless the zonation of 

transmissivity we assumed storativity to be constant (modelled by a single pilot point), 

but unknown, in these zones.  
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Boundary and initial conditions were homogeneous (i.e. zero head variations and 

fluxes) because we seek head variations. Only the boundary conditions governing the 

test (i.e., sea level fluctuation for tidal response and flow rates for the injection tests) 

must be expressed as time functions. All other boundary conditions are zero. The 

concrete wall in the middle part of the sea shore (dashed line in Figure 1 connecting 

zones 5 and 6) is modelled by a mixed boundary condition. The leakage coefficient was 

assumed to be constant and known (~10-7 d-1). This small value led to a negligible flux 

through the wall panel as it was assumed to cover almost the whole saturated thickness. 

Boundary conditions for the three tests interpreted are summarized in Table 3. Initial 

head variations are also zero given that before the start of the test, heads are defined by 

“natural” conditions of the system. Likewise, areal recharge does not need to be 

evaluated.  

 
Table 3. Summary of boundary conditions of the flow characterization model. 

 
 

Boundary Type Problem 1. Tidal 
response 

Problem 2. 
Injection at 

S5-1 

Problem 3. 
Injection at 

S25 

Left Presc. 
flow Q=0 Q=0 Q=0 

Right Presc. 
flow Q=0 Q=0 Q=0 

Upper Presc. 
flow Q=0 Q=0 Q=0 

Sea shore Presc. 
head Δh=ΔHsea Δh=0 Δh=0 

Middle part of 
the sea shore 

(concrete wall 
panel) 

Mixed Q=α(ΔHsea-Δh) Q=α(0-Δh) Q=α(0-Δh) 

S5-1 Presc. 
flow --- Q=281 m3/d --- 

S25 Presc. 
flow --- --- Q=134 m3/d 

 

 

A finite element mesh of 1039 elements (Figure 1) was used. Element size 

increased as the mesh progressed outside the area of interest. Forward in time finite 

differences were used to model temporal behaviour. The time step was 0.01 days (15 

minutes). This was chosen equal to the frequency of sampling. Simulation times 
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spanned the intervals [0, 20.8], [0, 1.4] and [0, 0.9] (units in days) for tidal response and 

for injections at S5-1 and S25, respectively. 

 

Three sources of information were included as conditioning data. On the one 

hand, tidal response (section 3.1) and data arising from injection tests (section 3.2) were 

analysed simultaneously. Available measurements of T and S (section 3.2 and Table 2) 

were used to calculate prior information of the model parameters. The key point of the 

inversion methodology is the specification of the statistical parameters in equation (1). 

The statistical unknowns are (σ1, σ2), the standard deviations of tidal response and 

injection test data, respectively, and (μ1, μ2), the weights of the plausibility terms of 

log10T and log10S, respectively. Optimum values of statistical parameters maximize the 

expected likelihood of the parameters given the data (Medina and Carrera, 2003).  

 

4.4 Transport prediction 
 
 
 Estimated log10T fields were validated in the prediction of a transport model. 

This is aimed at reproducing the movement of the contaminating solute under “natural” 

steady-state flow conditions. “Natural” flow conditions consist of prescribing no flow 

along the left and right boundaries (they represent regional streamlines), a prescribed 

flow along the upper boundary simulating regional flow, and a prescribed head on the 

sea shore simulating mean sea-level (zero). A mass flux is prescribed along the upper 

boundary (regional flow times baseline concentration). The contaminating episode was 

modelled by prescribing mass fluxes in the contaminated areas (shaded zones in Figure 

1). These fluxes were the outcomes of a reactive transport model (Bea et al, 2004) 

simulating the mobilization of the solute from the non saturated zone to the saturated 

one. Flow and transport boundary conditions and parameters are summarised in Table 4. 

The geometry of model 1 remains unaltered.  However, the finite element mesh was 

refined to avoid numerical dispersion (16624 elements). The contaminating solute was 

measured at boreholes S2, S3-bis, S5, S8, S12-1, S23, S24, S25, S26, S27, S28. 
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Table 4. Summary of boundary conditions and parameters of the transport model. f(t) denotes the time 

function simulating the mass of solute shifted from the non-saturated zone towards the saturated zone. 

This arises from a reactive transport model. 

 
Zone Equation Type Value 
Left boundary Flow Prescribed flow Q=0 m3/d 
Right boundary Flow Prescribed flow Q=0 m3/d 

Flow Prescribed flow Q=2.19 m3/d Upper boundary Transport Mass flux c=30 Bq/m3

Lower boundary Flow Prescribed head H=0 m 
Flow Prescribed flow Q=0.73 m3/d Contamin. zones Transport Mass flux c=f(t) Bq/m3

Flow Areal recharge qr=2.7E-4 mm/d Whole domain Transport Mass flux c=30 Bq/m3

Concrete wall Flow Leakage α=1E-7 d-1; H=0 m 
Long. dispersivity Transport --- 3 m 
Trans. dispersivity Transport --- 0.3 m 
Porosity Transport --- 0.2 m 
Saturated thickness Transport ---  2.5 m 
Retard. coeff. (zone 1) Transport ---  250 
Retard. coeff. (zone 2) Transport ---  80 
Retard. coeff. (zone 3) Transport ---  80 
Retard. coeff. (zone 4) Transport ---  60 
Retard. coeff. (zone 5) Transport ---  100 
Retard. coeff. (zone 6) Transport ---  100 
 

5. Results 
 
 
Results are evaluated in terms of estimation plausibility and fits of measured state 

variables (head variations and concentrations). log10T fields obtained by the hydraulic 

information-based and geology-based models are depicted in Figure 4. A quantitative 

comparison of log10T fields obtained by both models is summarized in Table 5. Fits of 

measured head variations are presented in Figures 5 (tidal response) and 6 (injection 

data). Only fits of the hydraulic information-based model are presented given that the 

ones using the geology-based model are very similar. State variable residuals are 

summarized in Table 6. Results of transport prediction are displayed in Figure 7. 

 

An important point of the inversion methodology is how to weigh the 

importance of the different data sets in the calibration. This is controlled by the 

statistical parameters in Equation 1, which control the contribution of each data set in 

the calibration process. For instance, if the standard deviation of tidal response data ( 1σ ) 
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is large compared to the standard deviation of injection test data ( 2σ ), the large volume 

of tidal response data may dominate the objective function F, hiding the information 

contained in data arising from injections and viceversa. Likewise, assigning large 

plausibility weights biases the solution towards the deterministic drift which in this case 

was poorly informative, due to the large uncertainty of available direct measurements. 

On the contrary, assigning small values leads to the best match of dependent variables, 

but to an unstable characterization of the unknown properties. Fortunately, setting the 

regularized pilot points method in a maximum likelihood framework allows us to obtain 

the optimum values of the statistical parameters. These maximize the expected 

likelihood of the parameters given the data (Medina and Carrera, 2003). We tested 36 

cases with values of (0.5 10-3, 10-3, 2.5 10-3, 5 10-3, 7.5 10-3, 10-2) m and (101, 102, 103, 

104, 105, 106) for 1σ  and μ1, respectively, assuming μ1=μ2 and a value of 5·10-4 m 

for . The latter leads to a contribution of injection test data of 30% of the total 

objective function. The optimum values of 

2σ

1σ  and μ1 obtained for both models were 

5·10-3 m and 1000, respectively. This value of μ1 (and μ2), the second smallest among 

the tested set, gives little importance to prior information of parameters (10% of the 

total objective function), what manifests the large uncertainty of the prior interpretation 

of injection tests.  Thus, we allow large departures of model parameters from their prior 

information. 

 

Estimated log10T fields (Figure 4) identify preferential flow paths defining the 

hydraulic connectivity structure and compare well to those revealed by the “as-built" 

maps. Unfortunately, this information is rarely available but becomes a valuable tool for 

the verification of our methodology. As expected, these flow paths are defined by the 

zones of the seawater pipeline and its filling. The similarity of log10T fields is an 

important finding of this work. The hydraulic information-based model is capable of 

reproducing the “anthropogenic” geological contacts although these were not explicitly 

accounted for. A quantitative analysis of this similarity was performed. We calculated 

the mean transmissivity of mesh elements within a zone (Table 5). These values are 

similar in both models. They differ significantly mainly in zones 2 and 3, representing 

the recharge pipelines and their accommodation. The geology-based model concentrates 

the  largest   transmissivities  in   the  seawater  pipeline  filling,  whereas  the  hydraulic 

information-based model extends this preferential flow path to zone 5 (i.e. log10T is 
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smaller in the seawater pipeline filling and larger in its vicinity within zone 5). Mean 

transmissivities are also different in zone 4, where no hydraulic data are available. As 

regards storativities, these were assumed to be constant though unknown. The estimated 

values are very similar to the prior information (0.09 vs 0.1 for the conglomerates and 

0.25 vs 0.3 for the anthropogenic fill). 

 
Table 5. Summary of average residuals (mean difference between calculated and measured state variables 

at a given borehole) of the calibration. P1, P2 and P3 denote the flow problems of tidal response and 

injections at boreholes S5-1 and S25, respectively. For instance, P3-S24 denotes measurements at 

borehole S24 corresponding to injection at borehole S25.  

 
 Hyd info-based Geology based 
    P1-S5  1.30E-02 1.33E-02 
    P1-S6  1.17E-02 1.38E-02 
    P1-S7  1.12E-02 1.25E-02 
    P1-S9  1.12E-02 1.27E-02 
   P1-S22  1.65E-02 1.59E-02 
   P1-S24  1.48E-02 1.52E-02 
   P1-S25  1.06E-02 1.12E-02 
   P1-S26  1.73E-02 1.86E-02 
   P1-S27  1.29E-02 1.31E-02 
   P1-S29  1.30E-02 1.47E-02 
  P1-S5-3  1.04E-02 1.04E-02 
 P2-S12-1  4.96E-02 3.77E-02 
   P2-S24  5.39E-02 5.00E-02 
   P2-S25  7.06E-02 6.85E-02 
   P2-S26  4.15E-02 3.62E-02 
   P2-S29  4.81E-02 4.91E-02 
   P3-S24  4.97E-02 3.52E-02 

 

Fits of measured hydraulic data were very similar and very satisfactory for both 

models (Figures 5 and 6). Only the fits obtained using the hydraulic information-based 

model are presented. Average residuals (mean difference between calculated and 

measured values at a given observation borehole, Table 6) of tidal response are close to 

zero in both cases. As expected, the hydraulic information-based model yielded slightly 

larger average residuals for injections given that the geological zonation was not 

accounted for explicitly. Surprisingly, residuals of tidal response are smaller. 
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Table 6. Mean estimated transmissivities (m2/d) in each anthropogenic zone using the hydraulic 

information-based and the geology-based models. 

 
Model Hydr. info-based Geology-based 
Quaternary conglom. (zone 1) 2091 2479 
Seawater pipelines (zone 2) 4866 7805 
Seawater pipel. Fill. (zone 3) 9876 175797 
Tetrapod defences (zone 4) 1437 86 
Tetrapod defences (zone 5) 4341 1324 
Tetrapod defences (zone 6) 904 1194 
 

In addition, several calibrations of log10T (assuming storage coefficients to be 

known) using only tidal response data and prior information were performed (i.e. 

neglecting injection test data). Those runs (beyond the scope of this paper) yielded 

log10T fields similar to those depicted in Figure 4 and excellent fits of measured tidal 

response data. Thus, tidal response data is by itself a powerful tool for identifying 

preferential flow paths.  

 

As for transport prediction, estimated log10T fields compare well to available 

concentration measurements (not used in the calibration) as displayed in Figure 7. The 

use of zonation as hard data (geology-based conceptual model) yielded slightly better 

predictions. 
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 Figure 4. Estimated log-transmissivities using tidal response and injection tests as calibration data. a) 

hydraulic information-based model (i.e., zonation not accounted for explicitly). b) geology-based model. 

Dashed lines depict the contact between anthropogenic zones. Pilot points are depicted by dots.  
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Figure 5. Calculated (line) vs measured (circle) tidal response using log10T field calibrated by the 
hydraulic information-based model (Figure 4a). Some measurements at boreholes S5, S7 and S5-3 are not 
depicted to clarify the figure. 
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Figure 6. Calculated (line) and measured (circles) response to injections at boreholes S5-1 (boreholes S24 

igure 7. Measured (dots) and calculated concentrations obtained with the geology-based model 
(continuous line) and the hydraulic information-based (dashed line) models. 

–on top right-, S29 and S12-1) and S25 (borehole S24 on bottom right) using log10T field calibrated by 
the hydraulic information-based model (Figure 4a).  
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6. Conclusions 

Tidal response is widely used to obtain point values of hydraulic diffusivity by means of 

his methodology is applied to a contaminated artificial coastal fill. The 

constru

) The flow paths identified by the hydraulic information-based model are 

 

) The hydraulic information-based model is capable of identifying the 

“geological” formations. 

 
 

the tidal response method, which assumes homogeneity. The objective of this paper was 

to overcome this limitation and use the tidal response to identify preferential flow paths. 

To this end, we applied an integrated methodology, which ranges from data gathering 

and filtering to geostatistical inversion. Spatial variability of transmissivity and 

storativity is characterized using the regularized pilot points method. The procedure 

demands the joint calibration of tidal response and injection test data, which allows us 

to resolve diffusivity into transmissivity and storativity. Application to real field data is 

complicated by the need to filter tidal effects from the response to injection and by the 

need to deal with different types of data. The first shortcoming demands the 

reconstruction of the tidal effect during the injection period. This is achieved by kriging 

with external drift. Framing the regularized pilot points method in a maximum 

likelihood context allows us to balance the importance of different types of data in the 

calibration. 

 

T

ction project revealed the location of a several zones of anthropogenic 

heterogeneity. In order to validate the methodology, we tested two model structures. 

First, information about anthropogenic zonation was ignored (“hydraulic-information 

based model”). We included this information is the second structure, termed “geology-

based model”. Results are summarized next: 

 

(1

consistent with those revealed by the “as-built” maps. This lends support to 

the robustness of the methodology. 

(2

anthropogenic zonation, which was accounted for only in the geology-based 

model. This may be of great help for identifying contacts between different 

 PIV-19



 

(3) ed tidal response and injection test data were 

obtained with both model structures. 

 

(4) port prediction compare well with the 

observed ones 

 

We conclude that tidal response is a useful and economical tool for identifying 

referential flow paths in coastal aquifers and that the presented methodology which 

include
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APPENDIX 1. Kriging with external drift for reconstructing heads at a borehole 
 

 
Time evolution of heads at boreholes affected by tidal fluctuations exhibit a marked 

non-stationary behaviour. These data can be modelled as the sum of a deterministic drift 

(heads at a reference borehole in this case, href(t)) and a stochastic  component ε(t), 

which is an intrinsic random function with zero mean and known variogram γε(t). 

Imposing unbiasedness constraints and minimizing the error variance leads to the 

system of equations of kriging with external drift: 

     ∑         i                                      (A1.1) ( ) ( )
N

ref
i j 1 2 i i

j 1

(t - t ) h t t - tε ε
=

γ +μ +μ = γ = 1,..., N

                                                                                                                    (A1.2) 
N

j
j=1

1λ =∑

                                                                                               (A1.3) ( ) ( )
N

ref ref
j j

j 1

h t h t
=

λ =∑

 

This system is solved for the N kriging weights λ (corresponding to N head 

measurements) and for μ1, μ2 (Lagrange multipliers of the constraints A1.2 and A1.3), at 

each time where ε(t) is estimated. Cross validation was performed to select the 

variogram γε(t) and to test the statistical significance of the estimation. Optimum results 

were obtained with a monomic model ( ktθεγ = ; k=0.12; θ=0.04). Mean error (which 

should be close to zero) was 0.0954 and dimensionless mean quadratic error (which 

should be close to one) was 1.044. In addition, the selected variogram was validated by 

estimating heads at reference borehole S5, where all measurements were available. 

Measured heads at reference borehole S9 were used as external drift (Figure A1). 
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Figure A1. Measured (circles) and reconstructed (line) tidal response at borehole S5 using S9 
measurements as external drift. 
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CONCLUDING COMMENTS 
 

 

 

This dissertation presents a modification of the pilot points method (PPM) including a 

plausibility term in the optimization process. This modification allows extending the 

range of applications of the PPM. The suggested approach has been tested in a number 

of synthetic examples and in a real case. Conclusions are summarized below. 

 

PAPER I. Pilot points method incorporating prior information for solving the 

groundwater flow inverse problem. 

 

In the first paper, the methodology in its conditional estimation variant has been 

tested on a synthetic example. Three items are explored: (1) the role of the plausibility 

term, (2) the sensitivity to the number of pilot points and (3) the effect of coercing the 

variation of model parameters during the optimization process. Results show that: 

 

- Neglecting the plausibility term, which is the standard approach in the context of 

pilot points, leads to the best fit of state variable data, but to an unstable 

identification of model parameters. This instability is translated in large 

variations of the model parameters and manifested qualitatively in a “lumpy” 

appearance of the estimated field. On the contrary, giving too much importance 

to plausibility biases the solution towards prior information. If the geostatistical 

model contains little information about actual variability patterns (which is often 

the case), the estimated field yields also a poor identification of heterogeneity. In 

fact, in most cases, conditioning to state variable data worsens the results if the 

plausibility term is not properly weighted. The use of a maximum likelihood 

statistical framework allows the estimation of the optimum weight of the 

plausibility term.  

 

C-1 



- Good fits to measured state variables were obtained when neglecting (assigning 

very low weights to) prior information. Still, nearly as good fits were obtained 

with stable estimations when moderate (optimum) weights were assigned to 

prior information. 

 

- A large number of pilot points should be used for obtaining a precise 

identification of heterogeneity. The use of the plausibility term, which reduces 

the risk of overparameterization / instability, allows the use of a large number of 

pilot points (in fact, as large as computationally feasible) and leads to enhanced 

resolution. 

 

-  The inclusion of a coercing factor in the variation of model parameters does not 

offer any improvement to the identification of heterogeneity. Coercing 

variations of model parameters only adds computational effort, while the 

solution remains unaltered. 

 

The main conclusion of this work is that prior information is a valuable data for 

quantifying heterogeneity, even when it is poorly informative. Thus, the use of a 

plausibility term including this information (usually disregarded in the context of pilot 

points) needs to be considered. 

 

PAPER II. Pilot points method incorporating prior information for solving the 

groundwater flow inverse problem. 

 

 In this paper, we explore the possibility of using a plausibility term in the case of 

seeking stochastic simulations of the unknown properties conditioned to direct 

measurements of these properties and dependent variables. Results show that optimum 

weighting of the plausibility term is necessary. This weight must be calculated for each 

conditional simulation. Often, a large number of simulations is calculated for evaluating 

uncertainty. Thus, to search the optimum weight for each simulation can be tedious. 

However, for each simulation, the optimum weight is the same as the one obtained 

using conditional estimation. This frees the modeller of the burden of having to seek the 

optimum weight at each simulation.  
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PAPER III. Regularized pilot points method for accommodating small scale 

variability of hydraulic conductivity. Application to simulations of contaminant 

transport. 

 

 The RPPM is framed in the context of the universal scaling theory. The 

objective of this paper is to test the ability of the RPPM for reproducing the effect of 

small scale variability of hydraulic conductivity. Heterogeneity of log10K is simulated 

using two nested variograms of short and long ranges, representing small scale 

variability and large scale variability patterns, respectively. Accepting that the high 

frequency fluctuations cannot be characterized, we aim at evaluating whether including 

their presence impedes the characterization of the large connectivity patterns defining 

large scale heterogeneity. In parallel, we explore whether including small scale 

variability allows reproducing tailing in breakthrough curves. Results show that: 

 

- The simulated fields reproduce the statistics of the “true” field (assumed 

known). 

 

- Adding a component of small scale variability does not impede the 

characterization of the large scale connectivity patterns. In addition, it leads to 

increased tailing in the simulated breakthrough curves. The tail slope is much 

larger than that observed in practice. Yet, results suggest that the slope may be 

decreased by adding more nested variograms. This lends support to the universal 

scaling theory of Neuman. 

 

- Simulated fields reproduce the main features of the “true” breakthrough curves 

(arrival time, peak concentration and slope of the tail). This confirms the main 

conjecture hat motivated the work, namely that one does not need to identify 

small scale variability, but to simulate its presence. 

 

- When small scale variability is ignored, simulated BTCs reproduce arrival time 

and peak concentration, but not the tail. This is not critical when the small scale 

variability is negligible. In such cases, optimal (smooth) estimation of hydraulic 

conductivity yields good results. However, in view of the ubiquity of tailing, this 

will be rarely the case in practice. 
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PAPER IV. Geostatistical inverse modelling of a coastal aquifer using tidal 

response and hydraulic tests as calibration data. 

 

The aim of this work is to characterize a contaminated site near the coast. Remediation 

requires a reliable characterization of preferential flow paths, which are best measured 

by hydraulic diffusivity. This can be derived from the time lag and/or the amplitude of 

tidal fluctuations using the tidal response method (TRM). Unfortunately, this method 

assumed homogeneity. The objective of this work is to overcome this limitation and use 

tidal response to identify preferential flow paths. The RPPM is used to characterize 

spatial variability. Hydraulic test data are added, which allows resolving diffusivity into 

transmissivity and storage coefficient. However, practical application is complicated by 

the need of filtering tidal effects from the response to injection and by the need to deal 

with different types of data. An integrated methodology, which ranges from data 

gathering and filtering to model calibration using the RPPM, is applied. The 

contaminated site was occupied by a factory. Therefore, valuable information of the 

construction is available, what allows comparing the identified flow paths with “as-

built” maps of the construction project. To this end, two model structures are applied. 

They differ on whether or not this information is explicitly used for zonation. Results 

show that: 

 

- The flow paths identified by the hydraulic information-based model (i.e., 

geological information not accounted for) are consistent with those revealed by 

“as-built” maps. This lends support to the robustness of the methodology. 

 

- Excellent fits of measured tidal response and injection test data were obtained 

with both model structures. 

 

- Calculated concentrations of a transport prediction compare well with the 

observed ones. 
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